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Introduction

The control over light drives a broad range of recent technological advances
that improve our daily lives. For example, guided light in optical fibers
enables the transportation of large amounts of data across the globe [1],
the energy of light harvested in solar panels accounts for an increasingly
large fraction of the global energy consumption [2] and efficient solid-state
light sources are becoming increasingly common [3].

Over the last two decades nanophotonic structures have been developed
that advance or promise to advance nearly all light-dependent technologies.
For example, the placement of nanoparticles in solar cells allows a more
efficient capturing of light [4], nanophotonic waveguiding circuitry promises
to deliver fast (quantum) information processing [5, 6] and nanophotonic
sensors can enhance the sensitivity to molecules by orders of magnitude [7].

The power of these nanophotonic devices lies in the unparalleled control
over light that they enable. In turn, the extent to which their potential
can be harnessed vitally depends on the understanding of the interactions
between light and matter at the nanoscale. Importantly, these interactions
can be inferred from the optical fields near nanophotonic structures.

This chapter starts with an introduction of the equations that describe
the optical fields of light. We illustrate this behavior using some recent cal-



1 Introduction

culations of the optical fields near nanophotonic structures and we highlight
some important features of these fields. Next, we focus our attention on the
optical properties of, and optical fields near, nanophotonic structures that
can guide light. Subsequently, we discuss the control over nearby emitters
offered by nanophotonic structures. Lastly, we conclude this chapter with
an outline of this thesis.

1.1 Optical fields in homogeneous media

One of the fascinating aspects of light is that it manifests itself both as
waves and as particles. The wave picture mostly allows for an accurate
description of the flow of light near nanophotonic structures [8]. Therefore,
in this thesis we adopt the wave picture. In this picture, light consists
of oscillating electric and magnetic fields. Mathematically, these electro-
magnetic fields and their interaction with matter is described by Maxwell’s
equations [9]. In a macroscopic treatment and in absence of sources and
currents, Maxwell’s equations are

V x E(r,t) = —,uoluT(r)aH(;?t), (1.1a)
V x H(r, 1) = eper () 6E§;’t), (1.1b)
V - (coer (r)E(r, 1)) = 0, (1.1c)

1
\Y (Mour(r)H(r,t)> 0, (1.1d)
where r = (z,y, z) is the position in a three dimensional space, €y(uo) and
€-(r) (ur(r)) are the vacuum and relative electric permittivity (magnetic
permeability), respectively, and E(r,¢) and H(r,¢) are complex vectors
that represent the electric and magnetic optical field respectively. In the
expression for the material properties €,(r) and u,(r) we have omitted
any time dependence. That is, in this thesis we consider only the linear
response of materials and ignore other (for example thermal [10, 11]) effects
that could change the permittivity. Because of these simplifications time
harmonic solutions to Maxwell’s equations exist.



1.1 Optical fields in homogeneous media

1.1.1 The diffraction limit and evanescent optical fields

The time-harmonic solutions to Maxwell’s equations of the electric field can
be expressed as a superposition of complex waves [8]

E(r,t) = / age’ KT gk (1.2)

where the integral is over all k, w is the angular frequency of the light, k
the wavevector and ay, denotes the complex amplitude and field orientation
associated with each k. Throughout space k = (k, ky, k) satisfies

n’ky = ki + k. + k2, (1.3)

where n = n(r) = /& (r)ur(r) is the local refractive index, kg = 27/
is the wavevector in free space and A9 = 27¢/w the free-space wavelength,
where c is the speed of light. In a purely dielectric medium with no losses,
the refractive index is a real and positive quantity. In such a medium,
optical waves can, according to their wavevector, be classified as plane and
evanescent waves [8]. A wave can be considered evanescent if at least one
component of k is imaginary [8]. For example, in air (n = 1) and for real

ky and ky, a ,/k:% + k:g > ko requires an imaginary k., which according to
Eq. 1.2 corresponds to an exponentially decaying field in the z direction.
Conversely, a plane wave requires all components of k to be real. For
example, a real k, in air requires the (real) k, and k, to satisfy |/k2 + k2 <
ko. Hence, when no evanescent waves are present, there is a limit to the
magnitude of the possible wavevectors.

Conventional optics (such as microscope objectives and lenses) use a
superposition of plane waves to create a focal region. The requirement for
plane waves, causes a minimal size to which light waves can be focused in
air. This limitation, which is commonly referred to as the diffraction limit,
was first derived by Abbe in 1873 [12]. Through Fourier mathematics it
can be shown that the diffraction limit can be approximated with [13]

2t Ao
Ak, 27
where Az is the smallest spread in positions to which light can be fo-
cused in x and Ak, = 47/)¢ is the maximal spread of available plane-wave
wavevectors. Identical expressions can straightforwardly be derived for y

Ax =~

(1.4)
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and z. The diffraction limit is a ubiquitous problem for microscopy tech-
niques that aim to resolve features smaller than Az and clever schemes to
measure at higher resolutions whilst using propagating waves have been de-
veloped. For example, in structured illumination microscopy a sample can
be illuminated with distinct grating orders to achieve ‘super resolution’ [14],
and fluorescence microscopy methods typically use the knowledge that the
detected light comes from fluorescent point sources to convert a diffraction
limited image to a higher resolution image [15].

1.2 Optical fields near nanophotonic structures

Nanophotonic structures gain many of their unique properties because €, (r)
varies on a (highly) subwavelength scale. In such an inhomogeneous envi-
ronment electromagnetic fields adapt to the spatially varying permittivity,
and consequently, unlike in homogeneous media, E(r,t) and H(r,t) vary
on a highly subwavelength scale.

Associated with the subwavelength structure of the optical fields, are
wavevectors larger than those allowed for plane waves (see Sec 1.1.1). These
wavevectors necessarily belong to evanescent waves that decay away from
the nanophotonic structure. The spatial region where evanescent waves
make up a large fraction of the optical field is commonly referred to as the
optical near field.

We illustrate the subwavelength structure of optical near fields with a
calculation of the fields near a ‘bow-tie’ nanoantenna (see Fig. 1.1a shows
the antenna geometry and Fig. 1.1b the field enhancement near the an-
tenna) [16]. The field enhancement map in Fig. 1.1b, which was obtained
with an illumination wavelength of 780 nm, reveals that the optical field
near a nanophotonic structure can be confined to only a few tens of nanome-
ters. Specifically, this calculation highlights that nanophotonic structures
can control the optical field on length scales much smaller than the optical
wavelength.

Many additional insights into the interaction between light and matter
can be obtained by considering the orientation of the electric optical fields.
For example, a full vectorial treatment of the electric fields is required to
understand the interaction of light with non-symmetric particles (such as
many molecules, QDs or nanoantennas), whose optical response depends

10
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Figure 1.1: Simulated optical fields near prototypical nanophotonic
structures. a Sketch of a gold (Au) bow-tie nanoantenna on a PMMA
(n=1.5) substrate. b Calculated intensity enhancement near a bow tie an-
tenna illuminated with light with a free space wavelength of 780 nm. White
contours indicate the bow tie geometry. The scale bar indicates 100 nm. ¢
Sketch of a cross-cut through a gold nanowire on a glass (SiO3) substrate.
The nanowire extends in the x- direction. d-f show the real part of the cal-
culated z, y and z-component of the electric field 20 nm above the sample
respectively. The frequency of the mode corresponds to a free space wave-
length of 1550 nm. The scale bar in f indicates 1 um. g Sketch of a silicon
(Si) cylindrical nanoparticle on a (n = 3.5) substrate. h (i) cross-cut of the
calculated electric (magnetic) intensity near the nanoparticle. The particle
is illuminated with light with a free space wavelength of 500 nm. Scale bar
indicates 50 nm. a,b are adapted from [16], d-f are adapted from [17] and
g-i are adapted from [18].
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strongly on the local electric field orientation. Near nanophotonic struc-
tures this field orientation can vary on a nanometer scale. The nanoscale
variation of the optical field orientations is intimately linked to the bound-
ary imposed by Maxwell’s equations. For example, from these equations it
follows that the electric field parallel to an interface has to be continuous
across that interface; satisfying this requirement in a nanophotonic envi-
ronment, where typically many orientations of interfaces occur in a given
volume of )\8, typically requires all components of the optical electric field
to be present.

As an example of the 3 dimensional nature of the electric field vector we
consider the propagation of light in a metallic nanowire. These nanowires
are candidates for the transport of information in optical circuit components
(in this case along z in Fig. 1.1c). In Fig. 1.1d-f we show calculations of
the vectorial electric field distribution near this nanowire waveguide [17].
These calculations demonstrate both that all electric field components are
present and that near the nanowire the spatial dependence of these field
components can be drastically different.

A control over the local vectorial electric field distribution is useful in
many applications. For example, in optical tweezing intricately structured
far fields are used to control the spin or orbit of particles. Furthermore,
these local vector fields can carry quantum mechanical properties such as
spin and orbital angular momentum, and knowledge of the local vector
fields is required to understand the transfer of these properties between the
fields and matter.

In the interaction of light with matter, the optical magnetic field is
typically ignored, because its interactions with matter are usually much
weaker than those of the electric field [8]. However, recently, magnetic
light matter interactions have attracted considerable interest. For exam-
ple, metamaterials that interact strongly with the magnetic field of light
were developed [19, 20], and magnetic dipole transitions have attracted
considerable attention [21, 22, 23]. Interestingly, because E and H are re-
lated through their curl (see Eq. 1.1), an electric field, whose orientation
and amplitude varies in all three dimensions in a volume of A3, typically
has a different spatial distribution than the magnetic field.

This effect can even be observed in prototypical dielectric scattering
objects, such as Si nanoparticles (sketched in Fig. 1.1g), which are used in
for example nanophotonic solar cells [24]. In Fig. 1.1h and i we illustrate

12



1.3 Optical fields in waveguiding structures

the different distribution of the nanoscale electric and magnetic fields, with
a recently published calculation of the electric and magnetic fields near such
a Si nanoparticle [18]. These calculations demonstrate a maximal magnetic
field in the center of the particle, whereas the electric field primarily located
at the outside and the corners of the particle. Hence, even in such a simple
nanophotonic structure, |E| and |H| can be distributed very differently,
and an understanding of the light matter interactions in such a structure
requires the knowledge of both.

In this thesis, we refer to the subwavelength variations of the vectorial
electric and magnetic optical fields, which we discussed in this section, as
the structure of optical fields.

1.3 Optical fields in waveguiding structures

Nanophotonic waveguides both guide light waves on nanophotonic chips
and structure the optical field at the nanoscale. Much like the wires in
current electronic circuits, these optical waveguides can form an impor-
tant part of optical circuit components and hybrid electro-optical circuits.
Furthermore, by cleverly structuring the waveguides, they can enable an
extensive (active) control over light. Examples of this control are the slow-
down of light [25, 26|, (optical) switching [27, 28] and enhanced nonlinear
effects [29, 30]. In this section we discuss two basic phenomena that en-
able the guiding of light in nanophotonic waveguides. Specifically, we show
how total internal reflection enables slab and rib waveguides, and how the
creation of a photonic bandgap enables photonic crystal waveguides. We
illustrate this explanation with a general description of how the optical
fields evolve in and near these waveguides.

1.3.1 Total internal reflection

Total internal reflection (TIR) is fundamental to many waveguiding struc-
tures. In Fig. 1.2a we sketch a plane wave in the yz-plane that undergoes
TIR when it encounters a lower index medium along constant z. Because
the medium is homogeneous along = and y, the wavevector in these direc-
tions is conserved. From Eq. 1.3 it follows that in the low index material

k, = \/ n?k§ — (k2 + k2). A wave incident under oblique angles, has a

purely imaginary k., when k2 + ki > n?owkg. The field such an imaginary

13
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k. decays evanescently into the lower index medium (right part of Fig. 1.2a,
see Sec. 1.1.1). Because light with an imaginary wavevector cannot trans-
port energy [8], the incident light is totally reflected at the z = 0 interface.
This phenomenon, TIR, is intensively used to guide light in nanophotonic
waveguiding structures.

1.3.2 Slab waveguides

One of the simplest waveguide geometries is a slab waveguide. A slab wave-
guide is formed by sandwiching a high index slab between two lower index
slabs (see Fig. 1.2b). These structures can confine light to the higher index
slab by means of TIR. In thin slabs (with a thickness of the order of or
smaller than the wavelength of light in the slab) only discrete solutions
to Maxwell’s equations exist for the propagation of light in the waveguide.
These solutions to Maxwell’s equations (in the absence of sources) are com-
monly referred to as the (eigen) modes of a structure [31]. In a slab wave-
guide, each eigenmode is associated with a wavevector that quantifies its
wavelength (Agiap = koAo/ksiap) along the propagation direction in the slab.
This wavevector can be tuned by the geometry of the waveguide. That is,
it can be analytically shown that the thinner the slab, the lower kg, of the
lowest order mode [32] (see also Sec. 1.3.3).

Rib waveguides

The different effective refractive indices for different thickness slabs enable
so-called rib waveguides (sketched in Fig. 1.2c¢) that confine light in two
dimensions and guide it in the third. A rib waveguide essentially consists
of three adjacent slab waveguides, of which the middle slab has an increased
thickness. Importantly, the wavevector of the mode in the thinner slabs is
lower than in the thicker middle slab and TIR can occur at the interfaces
between adjacent slabs. For some slab geometries this allows rib waveguides
to confine light to the middle slab.

1.3.3 Photonic crystal waveguides

In addition to guiding light by means of TIR, photonic crystal waveguides
use a periodic structuring of matter to guide light. This periodic structuring
gives rise to a region of frequencies at which light cannot propagate in the
crystal (a photonic bandgap).

14
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Figure 1.2: Guiding light by means of TIR. a Left: schematic represen-
tation of a light ray (with wavevector k) undergoing TIR. The angle 3. is
defined by k2 + k2 = n, k3, for values of k2 + k2, 3 > 3. and the light
is totally reflected from the interface. Right: cross-cut along z of the ampli-
tude of the electric field associated with a plane wave undergoing TIR. The
standing wave in np;4p, is caused by interference between the incident and
the reflected wave. The exponential decay indicates the evanescent field in
Niow- b Left: Schematic representation of light ray confined in a dielectric
slab. Right: cross-cut along z of the amplitude of the electric field of the
lowest order mode in the slab. The wave exponentially decays into the two
low n media. The coordinate system of a and b is shown in the bottom left
corner of a. ¢ Sketch of a rib waveguide. The orange line outlines a typical
iso-amplitude line of the mode.
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Much of the physics that gives rise to a photonic bandgap, can be
understood from the propagation of light in a Bragg stack (see Fig. 1.3a),
which is in essence a one dimensional (1D) photonic crystal. The optical
waves in this structure have to follow the periodicity imposed by the lattice
along . That is, according to Bloch’s theorem Ej(y) = e**v¥uy(y), where
ui(y) = u(y + a) is a periodic function with the same periodicity as the
crystal. The time harmonic electric field of the Bloch mode at a frequency
w; can be written as a superposition of plane waves (Bloch harmonics) [33]

E!(y) = Zain(k)ei(kﬁm%ﬂ)y, where m € Z,l € N (1.5)

where al indicates the amplitude and orientation of the m‘* Bloch har-
monic in the [** energy band. For each value of k,l the optical Bloch
mode is made up out of an infinite number of Bloch harmonics. Because
each Bloch mode has Bloch harmonics in each Brillouin zone, all distinct
Bloch waves occur for k-values within the first irreducible Brillouin zone
(—m/a < ky < m/a) [34]. Furthermore, for almost all photonic crystals
wi(k) = wi(—Fk) [33] and all distinct Bloch waves occur between k, = 0 and
ky = m/a. The frequencies of each mode constitute the dispersion relation
of the crystal, from which many of the crystal’s optical properties can be
inferred.

In the case of a Bragg stack, formed by two alternating layers of different
refractive index, an exact expression for this dispersion relation exists [35].
In Fig. 1.3b we show the calculated dispersion relation of a Bragg stack
formed by adjacent layers of 180 nm Si (n; = 3.5) and 240 nm air (ny = 1).
Here, the dashed black line illustrates that a Bloch wave (mode) is com-
posed of Bloch harmonics (black dots) in all Brillouin zones.

At the edges of the Brillouin zones (k, = (2m + 1)7/a) the wavelength
of the Bloch harmonics is (2m + 1) times the lattice periodicity. If we
consider the fundamental Bloch harmonic, there are two ways of positioning
the nodes of its field on the lattice: on the high (blue dots, Fig. 1.3b) and
on the low refractive index (red dots, Fig. 1.3b). This straightforwardly
extends to higher harmonics that have an odd number of nodes in one
of the indices. Because the field of the Bloch modes indicated by the red
and blue dots is distributed differently over the two refractive indices in the
Bragg stack, these modes cannot have the same energy (U(r) o< \/n |E(r)|?,
where U (r) is the energy of the mode and n is real [33]). Associated with

16
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Figure 1.3: Photonic crystal geometries and dispersion relations. a
Sketch of a 1D photonic crystal that is formed by layers of alternating in-
dex ny and ny with a lattice periodicity a. b Calculated dispersion relation
of a 1D photonic crystal (crystal geometry is outlined in the text). Black
(and purple) dots show the forwards (and backwards) propagating Bloch
harmonics of a Bloch wave at a frequency indicated by the gray dashed
line. The yellow shaded region indicates the photonic bandgap. The high
(and low) energy modes on opposite sides of the bandgap are indicated by
blue (and red) dots, respectively. Light blue dashed lines show the edges
of the Brillouin zones. ¢ (and e) Sketch of a 2D photonic crystal (and a
PhCW) geometry, respectively. The axis orientation of ¢ and e is shown in
the bottom left of c. d (and f) Calculated dispersion relation of a 2D pho-
tonic crystal (and a PhCW formed by a missing row of holes). The crystal
geometries are outlined in the text. The yellow region indicates the pho-
tonic bandgap. The gray region shows the continuum of available modes.
The blue dashed line shows the light line. The pink (and purple) lines in f
show the waveguide modes.
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1 Introduction

this energy difference is the existence of a photonic stop-gap (yellow regions,
Fig. 1.3b), where no optical modes are supported by the crystal.

Although one-dimensional photonic crystals were already theorized in
1887 [36], it was not until 1987 that Yablonovitch theorized two- (2D)
and three-dimensional (3D) photonic crystals showing a complete photonic
bandgap in all directions in the crystal [37]. A ‘two-dimensional photonic
crystal’ can be made by perforating a thin Si slab with a hexagonal pattern
of holes (see Fig. 1.3c). In Fig. 1.3d we show the calculated dispersion
relation of a 2D photonic crystal, with a lattice periodicity a = 420 nm,
formed by air holes with a diameter of 240 nm in a 220 nm thin Si slab [38].
Along y, this dispersion relation contains a continuum of modes above
and below the bandgap (gray shaded regions in Fig. 1.3d). Importantly, a
bandgap across all wavevectors in the plane of the photonic crystal slab is
present (yellow shaded region in Fig. 1.3d). In this thesis we only study
transverse electric (TE) modes, which in the center of the slab have no
magnetic field along the slab, however our photonic crystal also shows a
complete bandgap for transverse magnetic modes, which in the center of
the slab have no electric field along the slab.

By leaving out one row of holes from the lattice of the 2D photonic
crystal a line defect can be formed, which can act as a nanophotonic wave-
guide (as sketched in Fig. 1.3e). Fig. 1.3f depicts the calculated dispersion
relation for a photonic crystal waveguide (PhCW), which is formed by leav-
ing out one row of holes from the previously used 2D photonic crystal. In
this dispersion relation, we can identify two waveguide modes (pink and
purple lines). These modes are confined to the slab by means of TIR and
cannot propagate into the slab due to the photonic bandgap. In this thesis,
we will focus on the lowest frequency mode (pink) line, which is intensively
studied for the shape of its dispersion relation. The speed with which light
propagates in the waveguide (vg) is inversely proportional to the gradient
of the dispersion relation, that is

Vg = — = (1.6)

ng dk’

where c is the speed of light in vacuum and ng is the group index that
quantifies the slow down of light relative to propagation in air. Hence, a
positive (and negative) slope of the dispersion relation corresponds to a

18



1.3 Optical fields in waveguiding structures

forward (and backward) propagating wave. For example, in the disper-
sion relation of the 1D Bragg stack, we can associate the gray (and black)
dots with the Bloch harmonics that make up the forward (and backward)
propagating Bloch mode.

Strikingly, the gradient of the dispersion relation of a PhCW completely
flattens out at k = m/a (see Fig. 1.3d), indicating that light can be slowed
down enormously. This fascinating property of PhCWs has attracted huge
interest [6, 39, 40, 41, 30, 28, 25]. When light propagates so slowly through
the waveguide, photonic crystal waveguides increase the interaction be-
tween light and matter. This control over the flow of light allows for spec-
tacular applications such as ultrafast switches [28], an all optical delay
line [6], and efficient harmonic generation [30].

The evanescent field of a Bloch wave

The structuring of matter in PhCWs is associated with intricately struc-
tured optical fields. As an example Fig. 1.4a, presents a calculation of
|E|? at various heights near the PhCW used in the previous section. Like
the fields near the nanophotonic structures described in Sec. 1.2 the fields
closest to the structure vary on a nanometer scale. Moving away from the
surface, we observe that these spatial variations appear to blur, and that
the mode extends over a large area.

The spatial frequency content of the Bloch wave at increasing heights
above the PhCW can provide much insight into the evolution of the field
structure [42]. In Fig. 1.4b we show a calculation of the dispersion relation
of the first few Bloch harmonics. The horizontal dashed line in Fig. 1.4b
intersects the dispersion relation both when it has a positive and a negative
slope. From Eq. 1.6 it follows that these intersections are associated with
the harmonics of the forwards (indicated with colored circles) and the back-
wards propagating Bloch modes. For symmetry reasons these modes show
identical intensity distributions and we consider only the forward propa-
gating mode. According to Eq. 1.3 the wavevector along the propagation
direction of each Bloch harmonic is associated which a unique out of plane
wavevector. Hence, each harmonic decays at a different rate in the out of
plane direction away from the structure. We illustrate the different decay
of the Bloch harmonics with the calculations shown in Fig. 1.4c. This fig-
ure shows that the normalized energy in the m = —2 and m = 41 Bloch
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Figure 1.4: Evanescent structure of a Bloch wave. a Maps of |E|?
above the PhCW, at heights & indicated in the top left of each panel. When
h = 0, the distance to the PhCW surface is 20 nm. The intensity in each
panel is normalized to the maximal intensity at that height. All panels are
8 um wide and 2um high. b Dispersion relation of the first few Bloch
harmonics. The horizontal dashed line indicates the optical frequency
of w = 0.27 - (2m¢/a)Hz corresponding to a wavelength of 1576 nm.
Vertical dashed lines indicate the Brillouin zone edges. ¢ Energy in the
m = —2,—1,0,1 Bloch harmonics at increasing h. The energy in each
harmonics is normalized to its energy at i = 0 above the PhCW

harmonics is reduced by over 4 orders of magnitude only 250 nm above the
surface.

At these heights, the optical field is made up out of a different combi-
nation of wavevectors than at the surface and the field profile above the
waveguide drastically changes. The evolution of the optical field with in-
creasing distance emphasizes the intricate structure of the fields close to
nanophotonic structures.

Interestingly, the magnetic field, which can be found via the curl of the
electric field that reshapes with height (see Sec. 1.2), can show a spatially
different evolution for increasing height. We study the structure of electric

and magnetic vector fields above a PhCW in more depth in chapters 4
and 6.

1.4 Emission modification by nanoscale optical fields
Nanophotonic structures can also influence the emission characteristics of

nearby emitters [43, 8, 37, 44]. Typically, these emitters are two level
systems, such as fluorescent atoms, molecules, QDs or nitrogen-vacancy
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Figure 1.5: Emission of a two-level system. a Schematic of an emitter
that can relax from its initial (|e)) to its final state (|g)) by the emission of
a photon, with a decay rate . b An emitter in its excited state, which is
associated with zero photons, can emit a photon at frequency w to either
one of the ground states kqto ky.

centers, that emit a single photon upon relaxation. The redistribution of
charges in the emitter that gives rise to the emission of a photon is typically
described by a transition dipole [45]. The probability per unit time that
a two level systems relaxes from its initial excited (|e)) to its final ground
state (]g)) is called the decay rate v (see Fig. 1.5a). The decay rate is
determined by a combination of factors intrinsic to the emitter (such as the
overlap of its excited and ground state wave functions) and the amount of
available modes to which a photon can be emitted Fig. 1.5b.

Mathematically, the number of available states and the emitter’s intrin-
sic properties are combined via Fermi’s Golden Rule. If the emission of a
photon is mediated by a dipolar interaction that can emit into a continuum
of states, Fermi’s Golden Rule can be written as

|42 p(w, x, d), (L.7)

T= 3he

where p quantifies the intrinsic coupling between the excited and ground
states and p(w,r,a) the density of optical states available to a transition
dipole oriented along d.

Nanophotonic structures, by virtue of their structuring of the avail-
able photonic modes, offer a great control over p(w,r,a). Specifically,
as was first realized by Sprik et al. [46], whereas in bulk optics one can
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typically simply count the number of modes to find a ‘density of states’,

in nanophotonic structures these modes vary on a subwavelength scale
and consequently one needs to account for the ‘local density of optical
states’ (LDOS). The spatial dependence of the LDOS in Eq. 1.7 is included

by its dependence on r. The LDOS can be computed via p(w,ro,a) =
Im(&](a(w, ro,ro)|d). Here @(w, r,ro) is the environment’s Green’s dyadic [§],
which in the case of an electric dipole (p(rp)) is a three by three tensor that
projects the dipole onto its radiated field (E(w,r) x G (w,r,ro)-p(ro))-
This projection of p(rp) onto E(w,rp) with G (rg,ro) describes how an
environment affects an emitter’s ability to radiate.

The emission enhancement or reduction of an emitter near a nanopho-
tonic structure relative to free space has attracted considerable interest.
Because the prefactor (ww |u|? /(3hep)) in Eq. 1.7 remains constant upon
placement near such a structure, we need only consider the change in LDOS.
Consequently the emission enhancement can be calculated via

~ T 3 ~
Planro.d) - LG o r)ld)
Im<d|<8vac(wa ro, I‘0) |d>

(1.8)

In cavity type structures F' is commonly referred to as the Purcell fac-
tor [44], while in waveguiding it is called the emission enhancement fac-
tor [47]. Importantly, %wc(w,ro, ro) does not depend on the orientation
and position of the dipolar source and can be found analytically to be
Guac (w) = w3\ /eq/ (67c?).

Over the last two decades, photonic crystal waveguides [47, 48] and
bulk photonic crystals [46, 49, 37] have been intensively investigated be-
cause they can greatly speed up or almost completely inhibit the emission
of nearby emitters. In these applications typically linear electric dipoles are
considered. Conversely, in chapter 7, we investigate nanophotonic emission
control of circular electric and magnetic dipoles by nanophotonic struc-
tures. Circular dipoles are of particular interest because, as we describe
in chapter 7, they are associated with orbital angular momentum changing
transitions.

1.5 Outline of this thesis

In this thesis, we experimentally and numerically study the distribution
of optical electric and magnetic vector fields near nanophotonic structures,
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1.5 Outline of this thesis

and we study how these structures affect the emission of electric and mag-
netic circular dipoles.

In chapter 2, we introduce aperture type near-field scanning optical mi-
croscopy as a tool for studying nanoscale optical vector fields. We introduce
how this type of microscope can be used to map the phase and amplitude
of two orthogonally polarized signals. Central to this thesis is the question
how we could use these two channels to map all six (three electric and three
magnetic) components of the optical vector fields and how these fields affect
nearby emitters. Evidently, such a mapping requires both an increase of
the number of simultaneously detected channels and it requires the ability
to relate the signal in these channel to optical near-field components.

In chapter 3, we firstly investigate how the mirror symmetries of nanoscale
optical fields can be used to open up an additional detection channel and
to reduce the noise in near-field measurements. Then, we study if we can
use this channel to map an additional components of the optical near field.

In chapter 4, we present a detailed experimental study of the relation
between the optical electric and magnetic near fields and the signal in the
two orthogonally polarized channels. Furthermore, we investigate how this
sensitivity to E and H is affected by the geometry of the probe of our
near-field microscope.

In chapter 5, we underpin the experimental detection of E and H with
calculations of the signal of a near-field scanning optical microscope. We
use the optical reciprocity theorem to both simplify these calculations and
to provide insight in the process of image formation. As an outlook, we
present a method, based on the optical reciprocity theorem, that could be
used to separate the signal from the electric and magnetic near fields.

In chapter 6, we use the work of the previous chapters to investigate the
properties of optical electric and magnetic near fields near a PhCW. We in-
vestigate the presence of the phase- and polari-zation-singularities that are
linked to the orbit and spin of nearby particles, respectively. Furthermore,
we investigate how these fields evolve with height above the PhCW.

In chapter 7, we use our near-field microscope to investigate the con-
trol over the emission direction of circular dipoles offered by PhCW. The
helicity of circular dipoles is associated to the spin-states of solid-state
emitters. Hence, we study the possibility of a deterministic coupling be-
tween dipole helicity to photon path, which would implicate the possibility
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of an nanophotonic interface between coupling between the spin state of a
solid-state emitter and the path of the photon it emits.

In chapter 8, we study the control over helicity-to-path coupling in
PhCW in more depth. We map the coupling between both electric and
magnetic dipole helicity to photonic path and we investigate how this cou-
pling is affected by tuning the wavelength.

Finally in chapter 9, we discuss how the knowledge of vectorial near
fields could be used to create a highly efficient sensor for magnetic circular
dichroism.
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Measurement of nanoscale optical fields

An ideal measurement of the optical properties of nanophotonic
structures requires a technique that detects nanoscale electric
and magnetic optical fields in a phase- and polarization-resolved
manner. In this chapter we introduce the near-field scanning
optical microscope (NSOM) that we use in this thesis to probe
the optical fields near nanophotonic structures. We start by ex-
plaining how an aperture type NSOM maps the intensity of the
optical field near nanophotonic structures. Afterward, we ex-
plain how such an aperture type NSOM can be set up to provide
access to the phase and orientation of the optical near field.
Lastly, we use our NSOM to study the scattering of a subwave-
length hole in a metal film and we relate the scattering by this
hole to sensitivity of our NSOM probe.

2.1 Measurement of the optical intensity

A technique that can measure optical fields at resolutions beyond the
diffraction limit is extremely useful for the investigation of the optical prop-
erties of nanophotonic structures. The first idea for an experimental setup
that would enable measurements with a highly subwavelength resolution
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Figure 2.1: Aperture based near-field scanning optical microscopy. a
The original concept proposed by Synge. An optically thick metal film (black
line) with a subwavelength aperture, whose diameter (d) is much smaller
than the wavelength ()\), is scanned over a sample on a distance R < A.
b Schematic of an aperture probe. This probe consists of a dielectric core
(gray), that is coated with an optically thick metallic cladding (black). ¢
Scanning electron microscope (SEM) image of a real aperture probe that
consists of a glass core coated with aluminum. Scale bar indicates 200 nm.
Figures a and b were adapted from [51].

dates back to 1928 [50]. In that early work, Synge suggested to illuminate
a subwavelength hole in an opaque film to create a subwavelength light
source (see Fig. 2.1a). Raster scanning this source (using a piezoelectric
crystal) over predefined positions, nanometers away from a sample, and
recording the transmitted signal, would create a subwavelength mapping of
the sample’s optical response.

The fundamental mechanism behind Synge’s idea is that the highly
spatially confined and therefore evanescent waves (see Sec. 1.1.1) associated
with the subwavelength structure of the hole can couple to the sample and
thereby provide subwavelength information about its optical properties.
Because the evanescent fields decay rapidly away from the hole, the distance
of the hole to the sample needs to be kept in the nanometer range, which
requires a sophisticated mechanism [52].

Due to extreme technical difficulties, such as probe sample distance
control and the low throughput of aperture type near-field probes (order
1073 to 1077) [53, 8], it was not until 1984 that the first near-field image
was recorded [54], with an aperture near-field probe (as shown in Fig. 2.1b
and c). This breakthrough and the work by Betzig [55], sparked a flurry of
near-field microscopy activity at laboratories across the globe.

Early NSOMs were typically used to locally illuminate a sample (illumi-
nation mode), and offered an, at the time, unique ability to couple to single
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2.2 Vectorial measurement of nanoscale optical fields

molecule emitters [56]. A big advancement of the possible applications of
near-field scanning optical microscopy was made, when the emission of the
probe itself was shown to mimic that of a dipolar source, thereby allowing
NSOMs to probe the LDOS [57, 58]. Furthermore, not long after its initial
development, the NSOM was first used in collection mode experiments [59],
where light was collected from the evanescent optical fields near a sample.

Nowadays, additional near-field scanning optical microscopy schemes
such as scattering-type [60] and transmission-based near-field scanning
optical microscopy [61] coexist with the traditional aperture type NSOM.
Of these schemes the scattering type NSOM has proven particularly useful
for the study of nanoantennas [62, 63, 64]. This type of NSOM, which
couples light out of a sample by placing a highly subwavelength scatterer in
the sample’s evanescent field, can map the optical fields near a sample with
spatial resolution of a few nanometers over a broad range of wavelengths.

In this thesis, we will use an aperture type NSOM. As an example of a
collection mode experiment using an aperture probe, Fig. 2.2 depicts an in-
tensity map above a prism in which two counter-propagating waves undergo
TIR [65]. Although theoretically such counter-propagating waves are well
understood, this measurement from 1994 is one of the first experimental
visualizations of the distribution of the optical intensity near such a sim-
ple system. Furthermore, this measurement underpins both the nanoscale
confinement of evanescent optical fields and the high resolution that can be
obtained by means of aperture type near-field scanning optical microscopy.

2.2 Vectorial measurement of nanoscale optical fields

The flow of light at the nanoscale is characterized not only by the optical
intensity, but rather by the complete electromagnetic vector (see Sec. 1.2).
In this section we introduce two experimental techniques that allow us to
extract information on the phase and the orientation of the optical field
near a sample.

2.2.1 Phase-resolved detection

Access to the optical phase can be gained by incorporating the NSOM in
an interferometric detection scheme (as sketched in Fig. 2.3). Specifically,
we use a heterodyne detection scheme, in which the light from the probe
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Figure 2.2: Early near-field intensity measurement. Near-field scan-
ning optical microscopy measurement of the evanescently decaying power
in two totally internally reflected and counterpropagating plane waves
above a prism. The axes show the position of the probe along the prism
(x), away from the prism plane (z) and the power of the signal measured
on each position. Figure adapted from [65]

interferes with the frequency shifted reference radiation from the reference
branch (see Fig. 2.3).

The frequency of the reference branch is shifted by 40 kHz using two
acousto-optic modulators (AOMs) (see Fig. 2.3). AOMs frequency shift an
incident beam using a ‘moving’ acoustically generated grating. We select
the first (41) diffracted order of the first AOM, which is shifted up in fre-
quency by 80.04 MHz. Of the second AOM we use the —1 order, which is
shifted down in frequency by 80.00 MHz. Hence, the angular frequency dif-
ference between the two interferometer branches becomes Aw = 27 - 40kHz.

On the photodetectors we measure the intensity of the superposition
of the fields in the signal and the reference branch (see Fig. 2.3). That is,
ignoring the effect of signal and reference branch polarization, the voltage
measured from the photodetectors, V2, is given by

VP =P [|[ERP? + |BY)? + 2| ER|| B cos(Awt + Ag)],  (2.1)

where nP is the detector efficiency, E® (E®) are the electric field of the
reference (signal) branch on the photodiode, respectively, and A¢ = ¢t —¢p¥
is the phase difference between the reference and signal branches.
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Figure 2.3: A phase-sensitive NSOM. Light from a continuous wave in-
frared laser (CW IR) is split up into a signal (Sig.) and a reference (Ref.)
branch. The reference branch is frequency shifted using two AOMs before
it is coupled to a fiber (yellow tube). The signal branch is coupled to a
sample, from where light is collected by a near-field probe. Light from the
probe propagates through the fiber, where it joins the reference branch.
The two signals are converted to a free-space beam and the combined sig-
nal is detected on a photodiode, whose signal is analyzed by a lock-in de-
tector. The blue annotations in the figure correspond to the notation used
in the text for the fields and signals in the reference and signal branch, the
photodiode and the lock-in detector.

We analyze this signal with a lock-in detector that selects only the
signal that oscillates around the beating frequency (the right most term
in Eq. 2.1). Because only frequencies in a narrow window (25 - 80 Hz)
around the beating frequency are kept by the lock-in detector, noise, and
in particular 1/ f noise, is efficiently suppressed. The output voltages of the
lock-in detector can be straightforwardly combined to the complex signal
L [66]

L = nP|ER||ES|¢" 07 +e"), (2.2)

where ¢! is a phase offset set by the lock-in. From this expression we
can note that the amplitude of L, which is n”|ET||E9|, is a factor v =
|ER|/|E®| larger than the signal from the signal branch on the photodiode
alone (|E®|?). By choosing E® > E¥ amplification of the signal from E°
(heterodyne gain) by factors of over three orders of magnitude is achieved.
This is useful for near-field microscopy that typically deals with the chal-
lenge of detecting extremely weak signals (see Sec. 2.1).

Importantly, the phase of the complex exponential in Eq. 2.2 is directly
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2 Measurement of nanoscale optical fields

related to the phase in the optical near field. That is, because ¢*! and ¢t
are kept constant, all variations in the phase of L are caused by ¢°. Hence,
from L we can learn how the optical phase evolves in and near the sample.

2.2.2 Polarization-resolved detection

In addition to the optical phase, a NSOM ideally enables measurements
of the orientation of the electric and magnetic fields near a sample. To
this end, a NSOM can be set up to measure the polarization of the light
emerging from the detector fiber. To resolve this polarization, we use a
second polarizing beamsplitter (marked by PBS in Fig. 2.4a), which ensures
that light polarized along = and y contributes to the signals L, and L,,
respectively. An important part of polarization-resolved near-field scanning
optical microscopy is the relation between these polarization directions at
the beamsplitter and the optical field components near the sample. An
obstacle that has to be overcome to, for example, be able to relate light
from electric fields along = and y near the sample (indicated in 2.4) to -
and y-polarized light (now in the lab frame) at the detectors, respectively,
is that the light experiences birefringence in the fibers after the probe.

As is the case with (almost) every fiber, the fibers in the signal and
reference branch of our NSOM are slightly birefringent because of, for ex-
ample, stress due to bending and twisting of the fiber. Consequently, linear
x- or y-polarized radiation from the probe will typically become elliptically
polarized upon transmission through the fiber. To project these elliptical
polarizations back onto the z- and y-orientations above the sample, we
employ the quarter- and half-wave plate sketched in Fig. 2.4a. Specifically,
after the fiber we use the quarter-wave plate (A/4) to project the elliptically
polarized light back onto linear polarized light (as sketched in Fig. 2.4b).
Then, the second half-wave plate (\/2(s)) rotates the light such that z- and
y-polarized radiation from the probe contributes to L, and L,, respectively.

To ensure that the heterodyne gain affects the sensitivity of both de-
tection channels equally, the intensity in the reference branch needs to be
balanced over both detectors. However, the A\/2(3) and A/4 rotate the sig-
nal from the reference branch that also passes through a different stretch of
fiber than the signal branch (see Fig. 2.4). Consequently, we need to tune
the polarization of the reference branch without affecting the signal branch
polarization state. Hence, to ensure that both detectors receive an equal
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Figure 2.4: A polarization-sensitive NSOM. a This setup is an extension
of the setup presented in Fig. 2.3. This extension adds polarization sensi-
tivity by means of the elements marked with black letters. The elements
that were present also in the phase-sensitive NSOM are marked in gray. In
blue we indicate the two signals L, and L,. b Sketch of the evolution of
the polarization state of light that is horizontally polarized in the sample
plane. Upon propagation through the tip the light will in general become
elliptically polarized, after which \/4 projects the light back onto a linearly
polarized state, and finally \/2,) projects the light back onto the desired
basis. If the wave plates project light radiated with a horizontal polarization
by the probe back onto a horizontal polarization before the detectors, light
from a vertical polarization is also projected back onto its initial state.

heterodyne gain, we use A/ 2(1) to balance the intensity of the reference
branch over the detectors.

2.2.3 Fourier filtering of phase- and polarization-resolved data

In Fig. 2.5a we present an example of a phase- and polarization-resolved
measurement. We observe that the spatial dependence of the amplitude of
L, and L, is drastically different. For example, the amplitude of L, shows
a maximum along the center of the waveguide (along x = 0), whereas along
this line the amplitude of L, is minimal. Furthermore, the phase maps
reveal that the fields above the PhCW, which contribute to L, and L.,
have a distinctly different symmetry. That is, the phase of L, shows that
the minimum along x = 0 is accompanied by a 7 phase jump across z = 0.
Such a phase jump is indicative of the measurement of an odd-symmetric
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Figure 2.5: Fourier filtering a phase- and polarization-resolved mea-
surement. a Fields maps show the amplitude and phase of L, and L,,.
b Spatial Fourier transforms of L, and L,. The Fourier transform am-
plitude is normalized. Blue and green dashed boxes are drawn around
the m = —1 and m = 0 harmonics of the forwards propagating Bloch
mode, respectively. The color coding of the dashed boxes matches that
used in Fig. 1.4. c Fourier filtered amplitude of the forwards (FW) propa-
gating Bloch mode. The top (and bottom) row of panels in a, b and ¢ show
L, (and L,). Measurements were performed near the same crystal as that
used in chapters 4 and 5.

field above the PhCW. Conversely, the phase of L, is even-symmetric across
the waveguide center. In chapter 3 and 6 we use these symmetry properties
to unravel our near-field measurements (ultimately separating the signals
from two field components measured on one lock-in detector in chapter 3).

Another interesting feature of the field maps presented in Fig. 2.5a,
b is that, although Bloch’s theorem dictates that the amplitude of the
PhCW mode should follow the crystal’s lattice periodicity, the amplitude
maps exhibit larger features. To gain more insight into the origin of this
spatial modulation, we present result of the Fourier transformation of the
signal from both detectors in Fig. 2.5b. This Fourier transform contains
four distinct peaks, which correspond to the m = —1 and m = 0 Bloch
harmonics of a forwards (towards increasing y, and dashed lines in Fig. 2.5b)
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and a backwards propagating Bloch mode, which is commonly accepted to
arise due to reflections of the PhCW end facet [67]. Furthermore, a closer
inspection of the Fourier transforms reveals that, as is required for a Bloch
wave, the peaks of the m = —1 and m = 0 Bloch harmonics are separated
by 27/a.

Please note that, these measurements also show that the lateral spa-
tial frequency content along x differs between the Bloch harmonics. This
behavior of the Fourier transforms was also reported by Gersen et al. [68],
and is associated with the real-space structure of the Bloch wave along x.

To obtain the spatial maps of the forwards traveling mode, we filter
the Fourier transform of the signal, keeping the forwards traveling har-
monics. By transforming back to real space we obtain the maps shown
in Fig. 2.5¢ [67]. Importantly, these maps, which exhibit the same mirror
symmetry properties as those in Fig. 2.5a, now obey the periodicity im-
posed by Eq. 1.5. In this section, we have not related L, and L, to specific
field components. In chapters 4 and 5 we investigate this relation between
the signal and the optical near fields, and in chapter 6 we investigate the
properties of the vector fields that contribute to L, and L, in more detail.

2.3 Scattering properties of a subwavelength hole

Ideally, the signal measured with a NSOM can be related to specific optical
field components near a nanophotonic structure. Due to the similarity
between a subwavelength hole and the aperture of an aperture probe apex,
subwavelength holes are widely used to model the optical response of a
near-field probe [69, 70, 71, 72]. Theoretical investigations such as [69, 71],
advanced our understanding of which field components are measured with
a NSOM probe, and provided insight into how much light a NSOM is
likely to transmit. Importantly, the fields emitted by a probe have been
shown experimentally to resemble those calculated below a hole [72]. This
similarity suggests that a subwavelength hole could be used as a model
system to predict which field components are converted to radiation by
an aperture probe. In this section we therefore investigate the scattering
of light by a subwavelength hole that we illuminate with surface plasmon
polaritons (SPPs).
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Figure 2.6: Surface plasmon polaritons. a Sketch of the charges density
oscillations and the electromagnetic fields associated with a SPP. Charge
density oscillations are indicated by the plus and minus signs in the metal.
The electric field orientation is indicated with red lines and arrows, and
orientation of the transverse magnetic field is indicated with a black dot. b
Decay of the out of plane electric field amplitude of a SPP into the dielectric
and into the metal. Typically the decay length into the dielectric (d,) is of
the order of half a wavelength, whereas the decay length into the metal
(0,,) is typically of the order of a few tens of nanometers. ¢ SPP dispersion
relation (blue continuous line). At all wavelengths the SPP modes require
a larger momentum than is available in air (dashed black line). Images a-c
are taken from [73].

2.3.1 Surface plasmon polaritons

SPPs are guided optical waves on a metal dielectric interface that have
a combined electromagnetic and surface charge character (see Fig. 2.6a).
SPPs decay both into and away from the dielectric metal interface. That
is, because of screening in the metal, the field intensity of a SPP decays
evanescently into the metal (see Fig. 2.6b), and due to the guided character
of the wave it decays into the dielectric.

Along its propagation direction, the wavevector of a SPP is given by [73]

W | €EJEm
k = —/—. 2.
SPP c\ €+ €m ( 3)

The wavevector of a SPP has two important characteristics. Firstly, be-
cause the permittivity of metal has a large negative imaginary part, kspp
has a large imaginary part and SPPs decay along their propagation di-
rection. Secondly, because |Re{en}| > 1, Re{kspp} is greater than the
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maximal wavevector of light in the dielectric (see Fig. 2.6¢). Therefore,
without a mechanism that provides additional momentum, light from free
space cannot couple to a SPP mode.

2.3.2 Electric and magnetic polarizability of a subwavelength hole

To study the interaction between SPPs and a subwavelength hole, we use a
gold film in which we fabricate a hole by focused ion beam milling. We use
a unidirectional grating coupler [74], to provide the required momentum
discussed in the previous subsection, and launch a SPP beam towards the
hole (see Fig. 2.7a). Using our NSOM we form an image of the fields above
the sample, which are detected with z- (see Fig. 2.7b) and y-polarization
(see Fig. 2.7c). In both images we observe a beamlike feature centered
about y = 0. Interestingly, in Fig. 2.7b the beam appears as a single,
bright strip, and in Fig. 2.7c it becomes a double strip. Additionally, in
both images we see parabolic fringes whose periodicity suggests that they
arise due to interference between the incident SPP beam and SPP scattered
of the hole.

In fact, the features that we observe in these images can be understood
in terms of the incident and scattered waves associated with the hole-SPP
interaction. We relate the beamlike feature observed in both images to the
incident SPPs. That is, the relatively large signal polarized along the SPP
propagation direction (see Fig. 2.7b) can be straightforwardly understood
due to the longitudinal nature of (plane) SPP waves. However, because
the incident beam has a Gaussian distribution, and is not a plane wave, we
also observe a beamlike feature with transverse fields, albeit with a smaller
amplitude (see Fig. 2.7c). Notably, this transversely oriented part of the
beam changes sign at the beam center, thus producing the observed double
strip structure. The fringes can be understood to arise from the interference
of the incident SPP wave and the wave scattered by the hole.

Intuitively, the scattering of SPPs from subwavelength holes can be un-
derstood as a three-step process: (1) An incident SPP beam propagates
towards a hole. (2) The incident SPP wave interacts with the hole. (3)
SPP waves are radiated from the hole by the dipoles induced by the in-
teraction. The second step is of particular interest, since it encapsulates
the interaction of the electromagnetic field with the nanoscopic structure,
our hole. Because of the small dimensions of the hole, the radiation of
this scattering event can be described by (electric and magnetic) dipoles,
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2 Measurement of nanoscale optical fields

0 Normalized field amplitude

Figure 2.7: Surface plasmon scattering by a sub-wavelength hole. a
Scanning electron microscope image of the golf film with a grating and a
hole etched in it. A SPP beam is launched from the grating coupler to the
hole. Axis orientation is shown in the bottom left, scale bar in the top left.
b (and c¢) measured fields polarized along xz(and y) respectively. d (and e)
fitted electric fields along = (and y) respectively.

which couple to the available SPP mode on the gold film [75]. As we show
below, to quantify this interaction we must first accurately model both the
incident (E;,, H;,) and scattered (Es, Hy) fields that correspond to steps
(1) and (3).

The three components of the incident Gaussian SPP beam above the
film can be written as a Fourier sum of plane waves

0 SPP —
Ei(r) = —C ot giwsrrs N7 g o=@ gilkaethun) (9 4p)
kokspp P
vy
EM(r) = C%eiwspﬂ Z e~ (@) gilkozthyy) (2.4c)
0
K ky

where the limits of summation, which reflect the explicit separation of the
in-plane wave vector into its components, are k, € [—ko, ko] and k:?gpp =
kg—l—k; In these equations wspp = —ko/+/€go1a + 1 is the out-of-plane SPP
wavevector. We take the complex dielectric permittivity of gold at 1550 nm
to be €go1q = —115 + 114. [76]. Lastly, in Egs. 2.4a-2.4c C' and « determine
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2.3 Scattering properties of a subwavelength hole
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Figure 2.8: Single hole electric and magnetic polarizability. Electric (a)
and magnetic (b) polarizabilities of a single hole as a function of hole di-
ameter. The top panels of a and b show the calculated polarizabilities, the
bottom panels show both calculated (curve) and measured (points) values.

the amplitude and width of the incident SPP beam. The corresponding
magnetic field H;, can be calculated from Eq. 2.4a-2.4c using Faraday’s
law (Eq. 1.1a).

We can write an analytic expression for the SPPs radiated by the hole
dipoles [75]. As shown in earlier work [75], for plasmonic scattering this
radiation is dominated by an out-of-plane electric dipole p, and an in-plane
magnetic dipole m,, and hence it can be written as

ES = — QWipoeinPPZ [/{Z(Q)kisppHp)(kispp’l“) COS gbmy +
k
ikokg‘PPH(()l)(kSPPr)} Pz (f“ — —SPF i) ; (2.5)
wspp

where po = €/ ((1 +e'? (1 - e)) In this equation, HY are Hankel func-

tions, r = (x — x0)2 +(y — yo)2 is the displacement from the hole position
at (xo,y0) and T = (cos ¢X, sin ¢y). The total field of the scattering event,
which includes both the incident and scattered SPPs, can then be written
as E;, + Eg [75].

Using Egs. 2.4a-2.5, with C, ag, anr, (20, y0), and the dipole strengths
ap = pz/E?fO and ap = my/Hg% as fitting parameters, produces the
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2 Measurement of nanoscale optical fields

results shown in Fig. 2.7b-e. Importantly, ag and ajs describe the strength
of the response of the hole to the incident light. In Fig. 2.8a and b we show
a comparison of the experimentally determined ar and «aj; with theoretical
values as a function of the hole diameter, where both quantities have been
normalized to the cube of the hole radius, a. The uncertainty in the fitting
of the exact hole position both limits our ability to determine the exact
phase of the polarizabilities and introduces the main source of error in
our analysis. The error bars in Fig. 2.8a and b represent the standard
deviation in the spread of polarizabilities that we obtain by varying the
hole position in a 300 nm diameter circle around (zg, yo), while keeping the
total scattered energy the same as for the original fit. We observe good
qualitative agreement between the calculated and measured ap and ayy,
and very good quantitative agreement for the latter.

2.3.3 Conclusions

In summary, we used a combination of phase- and polarization-sensitive
near-field microscopy and electromagnetic theory to unravel the electric
and magnetic polarizabilities of single subwavelength holes in optically thick
gold films. This allowed us to quantify the dipolar electromagnetic response
of holes to surface waves, and in particular to demonstrate that the mag-
netic contribution should not be neglected, even for nanoscale geometries
where the magnetic permeability of each constituent is always near unity.
In fact, we show that for holes the magnetic response is often stronger than
the electric.

The similarity between the geometries of a subwavelength hole in a
metal film and the apex of an aperture type NSOM probe, suggests that
a conventional NSOM aperture probe may also have both an electric and
a magnetic response. Note that only in-plane oriented dipoles can radiate
from the tip apex to the fiber that leads to the detectors [71]. Model-
ing aperture probe sensitivity requires an excellent understanding of its
signal. In chapter 4 we perform the measurements required for such an
understanding, which we underpin in chapter 5 with a model based on the
optical reciprocity theorem.
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Modal symmetries at the nanoscale:
toward a complete vectorial mapping

In this chapter we use the symmetry properties of electric and
magnetic nanoscale optical vector fields to understand and un-
ravel near-field measurements. We ultimately show that we can
spatially map three distinct fields using only two detectors. As
an example, we create two-dimensional field maps of the out-of-
plane magnetic field and two in-plane fields for a silicon nitride
ridge waveguide. Furthermore, we are able to identify and re-
move polarization mizing of less than 1/30 of our experimental
signals. Since symmetries are ubiquitous in nanophotonic struc-
tures and their near fields, our method can impact many future
near-field measurements.

3.1 Introduction

Most structures, be they naturally occurring crystals or artificial nanopho-
tonic objects, possess some degree of symmetry. In fact, we often rely on
these symmetries to predict the flow of light about these structures. For ex-
ample, structural symmetries are essential to the elegance of Mie scattering
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3 Modal symmetries at the nanoscale: toward a complete vectorial mapping

theory [77], or to the existence of photonic bandgaps [78] (and Sec. 1.3.3).
Surprisingly, with few notable exceptions [63, 79], the prevalent symme-
tries of nanophotonic structures have not been exploited in the analysis of
near-field optical measurements.

Due to the tight confinement of light in nanophotonic structures, in the
vicinity of these structures typically all six components of the optical near
field - the three electric and the three magnetic - are nonzero (see chapter 1).
However, polarization-resolved near-field scanning optical microscopy, be it
in collection [70, 67, 80] or scattering [64, 81, 62, 82] mode, allows for the
simultaneous detection of only two orthogonally polarized channels (see
chapter 2). Based on our investigation of the scattering of a subwavelength
hole (see Sec. 2.3.2), each of those two channels could measure a signal
from both the electric and magnetic optical near field. Specifically, as we
demonstrate in chapters 4 and 5, the two channels could be used to detect
four field components, with each channel detecting signal from both an in-
plane electric and an in-plane magnetic field component. Although in this
optimal case only two electromagnetic (EM) fields would be missing, the
separation of the signals into maps of the individual EM components is far
from trivial. In fact, to date such a separation has not been demonstrated.

As is often the case, the underlying symmetry of the photonic struc-
tures constrains their near fields, and can therefore help unravel near-field
measurements. For example, on planes of symmetry, such as the center
of a waveguide or nanoantenna, certain near-field components are identi-
cally zero. For the nanoantenna, a careful measurement of two nonzero
field components was sufficient to create full EM field maps on the symme-
try plane [63]. Likewise, measuring along the center of a ridge waveguide
allowed for direct observations of the out-of-plane magnetic field using a
split-ring probe (SRP) [79]. These examples, however, are limited to a
single plane, whereas the constraints imposed by symmetry apply over all
space.

In this chapter we demonstrate how knowledge of the symmetry of the
structure and its associated fields can be used to unravel aperture NSOM
measurements and create comprehensive two-dimensional near-field maps.
We begin by showing how, for a benchmark photonic structure such as a
ridge waveguide, we can use symmetry considerations to identify and cor-
rect for polarization mixing as small as 1/30 of our signals. Furthermore, we
show that when we use a SRP to measure on this structure, we can unravel
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3.2 Sample and experimental setup
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Figure 3.1: Experimental setup. a A sketch of the sample and the tip of
the SRP used in this work. The fiber forms the core of the tip. The green
and purple arrows near the sample indicate electric fields along x and y,
respectively. The probe converts these fields to radiation polarized along
z and y, indicated by the top purple and green arrows. The polarization-
resolved detection of this radiation results in the signals L, and L,. The
semi-transparent black plane denotes the mirror symmetry of the wave-
guide (yz-plane). b Calculated field profiles 20 nm above the structure. To
indicate to which detection channel the far-field radiation from these fields
contributes, the borders of the plot windows are color coded to match the
colors of field orientations shown in a. The magnetic fields are multiplied
by the free space impedance Z, and the amplitude of all fields is normal-
ized to the maximum of E,. The dashed black lines indicate the edges of
the ridge.

our measurements and create two-dimensional maps of three contributions
to the signals on two detectors.

3.2 Sample and experimental setup
To test our methodology we measure on a benchmark photonic structure.

Specifically, we use a 20 nm high, 2 um wide SiyN4 ridge waveguide that
is mirror symmetric about the yz-plane (see Fig. 3.1a). Using a commer-
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3 Modal symmetries at the nanoscale: toward a complete vectorial mapping

cial full wave solver (COMSOL), we find that at a free space wavelength
of 1550 nm this structure supports a single TE mode (neg = 1.65). In
Fig. 3.1b we show a snapshot in time of the calculated electric and mag-
netic components of the fields associated with the TE mode. We choose the
point in time where E, is completely real. At this instant all components
are either completely real or completely imaginary. Around the center of
the waveguide, F,, H, and H, have an even symmetry, whereas E,, H,
and E, have an odd symmetry [33]. Note that the field profiles of both the
even E; and H, and the odd E, and H, are very similar. The similarity
between the in-plane electric and magnetic fields is further underlined by
the observation that the ratio of the amplitude of E, to E, is close to the
ratio of Hy to H.

These near fields can be converted to far-field radiation with a near-field
probe that is in close proximity of the sample. We ensure z- and y- oriented
electric near fields radiate to electric far fields polarized along = and y (inset
to Fig. 3.1a) [79], resulting in the signals L, and L,;, respectively. However,
the conventional aperture probe converts both the in-plane electric and, as
we will later show in chapter 4, the in-plane magnetic near fields to far-field
radiation. This radiation from H, (H) has its electric field along x (y) and
will be detected on the same detector as E, (Ey).

3.3 Polarization mixing removal

Before turning to the SRP, we apply the field symmetry constraints to
unravel the data collected with a conventional aperture probe (see Fig. 2.1).
An example of such a measurement is shown in Fig. 3.2, where in the top
panels of part a and b we present the 2D maps corresponding to the real
part of the complex signals L, and L,, respectively. For the situation
depicted in this figure we can write

Ly = ayEy + B:ZoHy = ol By, (3.1a)
Ly = ayE, + B, ZH, ~ o\ E,, (3.1b)

where the complex parameters a and 8 quantify the sensitivity to exper-
imental electric and magnetic fields. We multiply the magnetic fields by
the free space impedance Zj, because we detect the electric field associated
with this magnetic field. Further, because both the amplitude and profile
of the calculated E, (E,) and H, (H,) are very similar (see Fig. 3.1b) and
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3.3 Polarization mixing removal
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Figure 3.2: Symmetric aperture probe measurements. a and b (Top
panels) 2D maps of the real part of L, and L,, respectively. (Middle and
Bottom panels) 2D maps of the real part of the signals in L, and L, with
even (Middle) and odd (Bottom) symmetry, respectively. In a and b the
dashed black lines indicate the position of the line traces shown in ¢ and
d, the multiplication factors refer to scaling of the color map. ¢ and d Line
traces of the signal in L, ¢, and L,, d, together with the even (dark blue
lines) and odd (light blue lines) symmetry components, and together with
the fitted calculated in plane electric fields (red lines).

their ratio is constant in the measurement plane. That is, ZoH, ,/E,, = p
and in Eq. 3.1b we use o,
of E; , alone.

y = Qazy + PBry to express the signals in terms

The experimental field maps shown in the top panels of Fig. 3.2a and b
suggest that indeed an aperture probe largely collects the signals predicted
by Eq. 3.1b. Not only does L, appear to have an even symmetry, and L,
odd, but the amplitude of the measured L, is also an order of magnitude
larger than L,, as is predicted by the calculations (see Fig. 3.1b). However,
a closer inspection of L, (top panel of Fig. 3.2b) reveals an unexpected
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3 Modal symmetries at the nanoscale: toward a complete vectorial mapping

oddity: the line of minimal amplitude of this signal is shifted by 0.3 um
from the center of the waveguide. This suggests that L, not only contains
a component with odd, but also a component with even symmetry. We
therefore separate the signals according to their symmetries, by computing
the signals with even symmetry Leyen(z,y), and odd symmetry, Loqq(z,y),

as follows: Le.y) + Lo (2.)
€T, + mir {7,
chcn($7y) = Y 9 Y ) (32&)
L(x,y) — Lyir(z,
Logd(z,y) = (@9) 5 mis y)a (3.2b)

where Lyir(x,y) = L(z. — z,y) indicates the signal mirrored around the
center z. of the waveguide. We find z. to within 250 nm by fitting a
cosine to the central region of L,. This number is governed both the low
confinement of the model waveguide used and the quality of the data. With
increasing confinement this number will decrease. This separation approach
is justified because |E,| >> |E,|. Hence, any appreciable shift of L, due to
mixing between the two channels would result in L, being dominated by a
component with even symmetry, which is clearly not the case.

In the bottom panels of Fig. 3.2a and b we show the field maps with
even and odd symmetry constructed with Eq. 3.2b. We find that as ex-
pected in L., the even-symmetric component is much larger than its odd-
symmetric component. Furthermore, we observe that the minimum of the
odd-symmetric signal in L, is now on the center of the waveguide, and the
field distribution shape seems to match E, (see Fig. 3.1b). However, the
even component of L, that has a comparable distribution to E, and Hy(see
Fig. 3.1b), suggests the presence of some signal of those field components.

To gain more insight in our measurements, we inspect line traces (at a
constant y) along the maxima of the signals with even and odd symmetry.
As the 2D maps suggested, the L, is mainly even, with a negligible odd
component. We attribute the signal with even symmetry in L, to contri-
butions of E, and H, to the signal in this channel. The presence of signal
due to Hy or E, in L,, could be caused by mixing of the polarizations in
the probe, the fiber or the detection path. We can place an upper bound
on the amount of mixing by comparing the amplitude of the signal with
even symmetry in L, to that in L,. From this comparison, we estimate
that we detect ~ 1/30 of the signal from E, and H, in L, (1/900 in inten-
sity). Strikingly even such a small amount of mixing can distort L, and,
importantly, using Eq. 3.2b we can filter out this mixing.
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3.4 Separation of detected field components

Figure 3.3: Split ring near-field probe geometry and physics. a Scan-
ning electron microscope images of the split ring probe used in this work.
The diameter split ring probe is 218 nm. The slit of the split ring probe
is around 62 nm wide and 335 nm high. b Sketch of the physics through
which a SRP converts H, into radiation. The blue dashed and the red arrow
on the split ring depicts the current along the split ring and the direction
of electric field associated with the charge build up. The out of plane mag-
netic field is converted into radiation into the fiber with a polarization along
the red arrow.

Having shown how we can use symmetry considerations to identify the
polarization mixing in our measurements, we now quantify the sensitivities
of our system. In specific we use ), , (Eq. 3.1b) to fit the calculated in-
plane electric fields to our measurements. From these fits we find that the
relative sensitivity to the in-plane electric fields | |/|ay| = 1.1£0.240.1.
Here, the first error indicates the range over which afp7y can vary before the
sum of squares of the residual of the fit increases by a factor 2, and the
second error follows from the 250 nm uncertainty in x.. A comparison of the
measurements to the magnetic field instead results in the same sensitivity
ratio (|8,|/8;] = 1.2 £ 0.2+ 0.3). The difference in sensitivities could be
explained by, for example, a slightly ovally shaped probe, a more sensitive
detector in the x branch, or a slender tilt of the probe with respect to the
sample.

3.4 Separation of detected field components

Because the signal with even symmetry in L, is smaller than the other
signals and we understand its origin, we can use this channel to map an
additional component of the near field. Hence, we now turn to the SRP
measurements, where in addition to the in-plane electromagnetic compo-
nents we also expect to detect signal from the out-of-plane component of
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3 Modal symmetries at the nanoscale: toward a complete vectorial mapping

the magnetic field. We sketch the physics through which a SRP converts H,
into radiation towards the detectors in Fig. 3.3b. In analogue to a split-ring
resonator [20, 83] the gap in the SRP stops the currents induced by H, from
flowing around the ring. This process can be interpreted as the creation
of an electrical dipole oriented across the gap. This dipole can radiate to
the detectors, with a polarization that is oriented across the gap. In this
section, we orient the SRP such that the slit is parallel to = (as sketched
in Fig. 3.1a) and light from H, will therefore contribute to L, [79].

We confirm the detection of H, by analyzing the amplitude of the stand-
ing wave pattern that results from a reflection of the end facet of the struc-
ture (inset of Fig. 3.4c). Because E, and H, do not experience a phase flip
upon reflection, whereas H, does, the standing wave of H, is offset by a
quarter wavelength compared to the standing wave of £, and H,. In our
measurements (inset of Fig. 3.4c) we observe this shift, and accordingly
detect H, with L, [79].

Having confirmed the detection of H,, we now write the signals we
expect to measure with the SRP as follows:

Ly ~ o), By + v, Z0H.. (3.3b)

where we use 7y, to quantify the sensitivity to the out-of-plane magnetic
field.

We present the field maps measured with the SRP in the top panels of
Fig. 3.4a and b. It is immediately evident that these 2D maps differ greatly
from those measured with an aperture probe (see Fig. 3.2). Where with the
aperture probe L, largely had an odd symmetry, we now mainly observe
an even symmetry L,. Because we expect that the in-plane fields with odd
symmetry still contribute to L,, we again separate fields with even and
odd symmetry in the signal from the two detectors. We show the resulting
2D maps in the middle and bottom panels of Fig. 3.4a and b. In contrast
to the measurements with an aperture probe (see Fig. 3.2), these maps
show that the dominant component of both L, and L, now has an even
symmetry. At the same time, and in agreement with the measurements
shown in Fig. 3.2, we only find a clear odd symmetry signal in L,. That is,
the symmetries of our measured near fields allow us to resolve three signals
using only two detectors.
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3.4 Separation of detected field components

y (um)

L (mV)

2 0
X (um)

Figure 3.4: Split probe measurements. a and b 2D maps of the the real
part of L, and L, (Top panels). (Middle and Bottom panels) 2D maps
of the real part of the signals in L, and L, with even (Middle) and odd
(Bottom) symmetry. The scaling of the bottom maps in a and b is indicated
in the figures. c¢ and d Line traces of the even (dark blue lines) and odd
symmetry (light blue lines) components of L, and L,, together with the
fitted calculated in-plane electric fields (red lines). In c the inset shows line
traces of the amplitude of L, (green)and L,, (purple)along z = 0. Ind the
dark gray line indicates H fitted to the signal in L,, with even symmetry.

These findings are confirmed by the line traces of the separated signals
that are depicted in Fig. 3.4c and d. In these figure panels we observe
that the even symmetry component of L, and both the even- and odd-
symmetric components of L, are in good agreement with the calculated
distributions for E,, H, and E,, respectively. By fitting these fields to the
measurements, we find for the SRP that |/ [/[a;| = 0.23 +0.08 +0.07 and
la| /1y | = 0.94 4+ 0.50 + 0.05. That is, the sensitivity to H, is roughly
equal to that of the superposition of £, and H,. Furthermore, the SRP is
also relatively more sensitive to E, than the aperture probe. We explain
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Figure 3.5: Measurements with a SRP on the vertical section of the
waveguide. a and b 2D maps of the real part of L, and L, (Top panels).
(Middle and Bottom panels) 2D maps of the real part of the signals in L,
and L, with even (Middle) and odd (Bottom) symmetry. The scaling of the
bottom map in b is indicated in the figures. ¢ and d Line traces of the
even- (dark blue lines) and odd-symmetric (light blue lines) components of
L, and L, together with the fitted calculated in-plane electric fields (red
lines).

the increased sensitivity by the slit that forms the gap in the SRP, because
for y-polarized illumination there may exist an available mode in the slit,
whereas for z-polarized illumination there is no available mode [84].

To ensure that we have correctly identified the components measured
with a SRP, we now change the orientation of the slit with respect to the
waveguide. The waveguide that we use has both a horizontal- (on which
we measured the data shown in Fig. 3.2 and 3.4) and a vertical section,
connected by a gentle 90° bend. By measuring with the SRP above the
vertical section of the waveguide, while keeping the orientation of the probe
fixed, we can effectively rotate the slit 90° to the previous measurements.
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3.4 Separation of detected field components

On the center of the vertical section of the waveguide, where the slit is
parallel to the waveguide, we expect that L, contains signal from £, and
H,, and that L, contains a superposition of the signal from F,, H, and
H,.

In the top panels of Fig. 3.5a and b we present the 2D field maps mea-
sured with slit in the SRP oriented parallel to the waveguide. These field
maps greatly differ from those measured with the slit oriented perpendic-
ular to the waveguide (see Fig. 3.4). We find that L, is dominated by
an even-symmetric component, and that L, clearly contains signal from a
odd-symmetric field. These measurements suggest that we write the sig-
nals we expect to measure with the slit in the SRP oriented parallel to the
waveguide as follows:

L, ~ral,E,y, (3.4a)

Ly = r(ayEy + vy ZoH.) =~ coyy Ey, (3.4b)

where r quantifies the change of the field amplitude in the waveguide with
respect to those reported in Eq. 3.3b. The fields E,, E, and H, indicate
the fields shown in Fig. 3.1, and the parameters a; and o/, correspond to
those used in Eq. 3.3b. Furthermore, because ZoH,/E, ~ p; (see Fig. 3.1),

we use o/y’ = o/y + p1yy, to express Ly in terms of £, alone.

To compare the signals predicted in Eq. 3.4b to the measurements,
we again separate the components with even and odd symmetry (middle
and bottom panels of Fig. 3.5a and b). The profile of the odd-symmetric
component in L, suggests that it contains signal from E, and H,, and, the
large even-symmetric component in L, further confirms the detection of E,
H, and H.. Furthermore, because there is little correspondence between
the profile of £, and the even-symmetric component of L,,, we expect that
there is very little mixing. Specifically, we find that the amplitude of the
even-symmetric component in L, is 61 times larger amplitude than that of
the even-symmetric component in L, that does not follow the same profile.
This means that the mixing in the system is smaller than 1/60, hence it
is even smaller than for the normal probe. The presence of the small odd-
symmetric component in L, could be explained by a not perfectly 90° angle
of the vertical section of the waveguide with respect to the orientation of
the horizontal section.
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3.5 Conclusions

In this chapter we showed how symmetry can be used to identify and sepa-
rate different electromagnetic field components in NSOM signals. By sepa-
rating these fields, we opened up a new detection channel that allowed us to
measure three near-field signals on only two detectors. That is, we mapped
the out-of-plane magnetic field and two signals of the in-plane fields in two
dimensions. In the future, we aim to extend this method, so that it can be
used to measure all six components of the electromagnetic field. Because
field component that we do not use to explain our signal is E,, which in
our study has odd symmetry, we aim to design a probe that in addition
converts this last component to radiation on L,. Such a probe, combined
with the approach demonstrated in this chapter, would make the detection
of complete nanoscale vector fields feasible. Lastly, the symmetries of the
ridge waveguide are generally present in nanophotonic structures. Since
measurement of the phase of the near-field signal is the only requirement
enable the use symmetry for separating fields, we believe that our method
will benefit different NSOM schemes, and experiments for a wide range of
nanophotonic structures.
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Simultaneous measurement of nanoscale
electric and magnetic optical fields

In this chapter we demonstrate the simultaneous detection of
both electric and magnetic fields with a manoscale resolution.
Specifically, we demonstrate a direct mapping of all in-plane
electromagnetic near fields with a conventional, symmetric aper-
ture probe, which had traditionally been assumed to detect either
the electric fields or only the in-plane magnetic field. Fxploit-
ing the 3D evolution of the evanescent Bloch harmonics above
a photonic crystal waveguide, we show that the ratio of the effi-
ciencies with which the magnetic field and the electric field are
collected is between 0.3 and 2.5.

4.1 Introduction

For over 20 years near-field scanning optical microscopy has improved our
understanding of the flow and behavior of light in and around nanophotonic
structures [56]. Although the interaction of light with nanoscopic structures
typically involves all six components of the electromagnetic near field, maps
of two components of the local optical electric fields have been sufficient
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4 Simultaneous measurement of nanoscale electric and magnetic optical fields

to clarify and uncover exciting phenomena such as control of surface plas-
mon polaritons [74, 85|, field enhancements near nano-antennas [62, 81],
and polarization singularities [67]. The recent advent of metamaterials has
sparked research of nanophotonic structures that couple strongly to the
magnetic field of light [86, 87, 88], with the potential to cloak objects [89],
show giant nonlinear optical activity [90] or exhibit a negative refractive
index [91]. In response to these developments, techniques have been de-
veloped to measure the nanoscale magnetic field [70, 92, 93, 94]. However,
metamaterials interacts with both not only with the magnetic but also
the electric field of light. Consequently, a measurement of the complete
nanoscale electromagnetic field vector is a powerful way to drive advances
in the field of metamaterials further, and to elucidate the interplay between
optical behavior and geometry that underpins these phenomena.

An ideal measurement would allow for the simultaneous mapping of
both electric and magnetic fields in and around nanophotonic structures. In
principle, using Maxwell’s equations it is possible to derive the full electro-
magnetic field vector if 3 of its components are known (in both ampli-
tude and phase) in a 3D space with sufficient accuracy for the derivatives
to be taken. However, while such an approach is at the heart of many
numerical simulations, the experimental equivalent has not been demon-
strated at the nanoscale where typically all components are present. That
is, to date, no more than two-field components have been simultaneously
measured [62, 63, 81, 67]. Consequently Maxwell’s equations can only be
exploited on certain planes of symmetry [63] and not in general.

Here, we demonstrate a direct mapping of all in-plane electromagnetic
near fields with a conventional, symmetric aperture probe (see Fig. 4.1a),
which had traditionally been assumed to detect either the electric fields [67]
or only the in-plane magnetic field [70, 69]. Specifically, we show that the
ratio of the efficiencies with which the magnetic field and the electric field
are collected is between 0.3 and 2.5.

4.2 Experimental

We image the evanescent fields above a PhCW using a homebuilt-, polarization-
sensitive NSOM (see chapter 2). This is an ideal structure for studying
near-field detection, as the electromagnetic field distribution of its modes
is well understood, while not being trivial [33]. In this chapter we use a

52



4.3 Aperture probe sensitivity to i and H;,

b
o .
C
- |-
d
;
X

Figure 4.1: Near-field measurements of a PhCW. a, SEM image of the
apex of the 218 nm aperture probe used in this work. The black scale
bar indicates 500 nm. b-d, Calculations of the transverse fields. Left: the
electric field along z;, y and z, respectively. Right: the magnetic fields along
y, x and z, respectively. e, f, Measurements taken 20 nm above the sample
on L; (e) and L, (f). Panels b-f all show amplitudes, and are scaled to their
respective maxima. Axis orientation is show below f. All panels are 3 by 3
unit cells, and for clarity they are stretched in the x-direction (by a factor
1.7).
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PhCW, formed by perforating a 220 nm thin silicon slab with a hexagonal
lattice of 120 nm radius holes. One row of missing holes acts as a waveguide
for the 1570 nm TE polarized light. A 2D field map is created by raster
scanning an aperture probe in the xy-plane above the nanophotonic struc-
ture (see chapter 2). We ensure that all light resulting from an z-oriented
electric field above the PhCW, E,, is collected by detector L., and likewise
E, is detected by L,. Any light that might arise from an x-oriented mag-
netic field, H,, would be detected by L,, and that H, would be picked up
by L, (see chapter 2 and 3).

4.3 Aperture probe sensitivity to E; and H;

The 3D structure of the PhCW allows us to use measurements at increasing
heights above the crystal, h, to differentiate between E and H). In the
zy-plane of symmetry, inside the silicon membrane, only TE components
(E., By, H.) of the electromagnetic field are non-zero. However, away from
this symmetry plane all six components can be found [38]. Further, these
profiles have an intricate subwavelength structure, as reflected by our calcu-
lations of the fields 20 nm above the waveguide (Figs. 4.1b-d), which assists
in the identification of the different field components. The corresponding
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Figure 4.2: Calculations of the in-plane fields in the zy-plane at height
h above the surface. a, b, Calculations of the evanescent field above the
crystal. In a the left column of panels shows E, left of symmetry plane
and the right column shows H,, right of symmetry plane. In b the left and
right columns show in-plane field profiles of £, and H, respectively. All
plots show amplitudes of the calculated or measured signals. The color in
all plots is scaled to the maximum, the scaling relative to the ground plane
is indicated by the multiplication factors. All panels are 3 by 3 unit cells,
and for clarity they are stretched in the z-direction (by a factor 1.7); the
axis orientation is show in the top E, panel.

measurements (Figs. 4.1e-f) for L, and L,, are in excellent agreement with
the calculated, in-plane components of the mode® (Figs. 4.1c-d). This data
not only shows the good polarization separation of our system, but it also
highlights that the fields mapped at the surface of the PhCW could equally
be E, and E, [67] or H, and H,.

However, as h increases, not only do the relative amplitudes of the
electric and magnetic fields change, but so do their spatial profiles. This
divergence of the different field profiles occurs because a given mode is
composed of a superposition of many Bloch harmonics, each of which decays
differently in z (see Sec. 1.3.2) [42]. And, because E and H are related
through their spatial derivatives (see Eq. 1.1), each field profile shows a

#We show half the field profile of each mode, because the symmetry of the waveguide
enforces mirror symmetry in z of the field amplitude of the mode.
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Figure 4.3: Measurements and fitted calculations in the zy-plane at
height h above the surface. a, Left: fields measured on L,. Right: fitted
calculations. b, Left: fields measured on L,,. Right: fitted calculations. All
plots show amplitudes of the calculated or measured signals. The color in
all plots is scaled to the maximum, the scaling relative to the ground plane
is indicated by the multiplication factors. All panels are 3 by 3 unit cells,
and for clarity they are stretched in the z-direction (by a factor 1.7); the
axis orientation is show in the top L, panel.

different height dependence. This is reflected by Fig. 4.2a and b that depict
the calculated amplitudes of E, (and Hy) and E, (and H), respectively,
for different values of h. Notably, for h > 250 nm E, has minima along
the center of the waveguide, where H, has maxima (arrows, Fig. 4.2a). In
addition, at these large heights, the amplitude at the side of the waveguide
of H, is clearly larger than that of E, (arrows, Fig. 4.2b).

When scanning our NSOM probe at heights A > 20 nm, we can no
longer use our force feedback system to control the probe sample distance.
Thus, we switch to a quadrant-cell based height feedback loop. In this mode
of operation we compare the position of the probe as measured with the
quadrant cell, when it scans the surface of the sample. Because we now no
longer feedback on the probe-sample distance directly, these measurements
could be affected by drift between the probe and the sample. We correct
for this possible drift by matching the decay of the field above the photonic
crystal to the decay of calculated fields, by scaling the height at which we
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4 Simultaneous measurement of nanoscale electric and magnetic optical fields

compute the data. We find less than 10 nm/hr drift for the measurements
presented in this chapter, corresponding to a maximal total drift of typically
5% and maximally 15% of the total height above the surface.

The left panels of Fig. 4.3a and b depict how the measured field patterns
evolve with height. Surprisingly, we observe that as the height increases
the measurements correspond to neither the calculated E| nor H) profiles.
For L, we observe a minimum along the center of the waveguide that is
reminiscent of E, (arrow, Fig. 4.3a). In contrast, for L, we observe the
enhanced side lobes expected for H,. Yet the response at the center of
the waveguide appears suppressed (arrow, Fig. 4.3b). These observations
suggest that we measure a superposition of E| and Hj. By fitting the
amplitude of the superposition of the two calculated complex fields to our
data

Ly(r) = oz Ey(r) + B, Hy(r), (4.1a)

L,(r) = ayEy(r) + By Hy(r), (4.1b)

where r = (x,y) represents the position at which we measure the fields,

we find o, 4 and B, that are complex scalars that quantify the sensitivity
of our system to the electric and magnetic in-plane fields, respectively. To
minimize the number of fitting parameters, we avoid fitting the phase of the
Bloch wave, by fitting the amplitude of the calculations to the amplitude
of the measurements. We choose our unit system such that the electric and
magnetic fields are in the same units, and hence if |a] = |3], the probe is
equally sensitive to the electric and the magnetic fields.

4.4 Effect of probe diameter on sensitivity to E and H;,

The right panels of Figs. 4.3a and b depict fits to measurements obtained
at different heights for each detector. For all heights we find that the fit
of the in-plane fields excellently reproduces all the features in the data.
Importantly, we use only the four complex fit parameters, o, , and 3;,
to fit all 9 heights ranging from 20 to 380 nm simultaneously. For this
particular probe, with a 218 nm diameter, we find that |5;|/|a.| = 0.5(2)
and that |5,|/|ay| = 0.9(3), our results for the relative phase the signal from
the electric and magnetic fields were at this point inconclusive. These values
of |5]/|alindicate that we detect roughly equal amounts of the electric and
magnetic near fields. In stark contrast to previous work that assumed that
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Figure 4.4: Probe size dependent sensitivities. For probe diameters D
from 120 nm to 350 nm we present |3|/|«/| for both detectors.

either the electric [67] or the magnetic [70, 95] fields are detected, we show
that we simultaneously detect nanoscale electric and the magnetic fields.

Therefore we investigate the sensitivity to E| and H)| of probes with
different diameters. Figure 4.4 depicts a plot of the relative sensitivity
(18]/]e|) for the two detectors L, and L,. We identify the height drift
(10% of the height), the uncertainty of the zy-position (30 nm in each
direction) and our exact location on the calculated dispersion relation of
the photonic crystal waveguide as sources of error in our estimation of
|Bz,yl/|tz y ], for each probe. We then sweep through this 4 parameter space,
and for each permutation use the fitting procedure outlined in Sec. 4.3 to
find a value for a and . In this manner we obtain a spread of |5, /|,y
values whose standard deviation is shown as the (vertical) error bars for
these ratios (see Fig. 4.4). Possible errors in our estimation of the probe
diameter, tilt in probe orientation and fabrication imperfections, effectively
change the diameter of the probe. This uncertainty is reflected in the
(horizontal) error bars for D (see Fig. 4.4). This figure shows that probes
of all diameters detect both E; and Hj. Strikingly, we find that to within
error bars all probes detect roughly equal amounts of signal from the electric
and magnetic fields.

4.5 Conclusions

In conclusion, we have demonstrated the simultaneous detection of the elec-
tric and magnetic optical fields at the nanoscale. We show that a symmetric
aperture probe measures all 4 in-plane components of the electromagnetic
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4 Simultaneous measurement of nanoscale electric and magnetic optical fields

field at once. The superposition of electric and magnetic fields that we
detect can be extended to a full vectorial map using Maxwell’s relations
in combination with additional constraints; these can be provided by the
symmetry properties of the sample, or, alternatively, by measurements with
different probes. These auxiliary measurements could be performed with a
split-ring probe that is known to measure H, (see chapter 3), or a scattering
type NSOM that detects E, [81]. Concurrently, this work paves the way
for studies of fundamental processes such as, for example, of a molecule
undergoing a magnetic dipole transition [92].
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Predicting aperture probe sensitivity to E;
and HH

We demonstrate that the optical reciprocity theorem can be used
to excellently predict the field maps measured with an aperture
probe above a photonic crystal waveguide (shown in chapter J
and 6). We show that the ratios of the signal from the electric
and magnetic fields in these predicted measurements matches
the experimentally observed ratios for a wide range of probe di-
ameters. As an outlook, we present a method, based on the
optical reciprocity theorem, that could be used to separate the
signal from the electric and magnetic near fields.

5.1 Introduction

Challenging calculations of the optical properties of nanophotonic struc-
tures can often be aided by exploiting the boundary conditions on a system.
In this context, the optical reciprocity theorem is a particularly powerful
tool for solving diffraction problems [96]. These problems typically require
knowledge of the fields of a source on a detector (P) in the presence of
a scattering object, for example an aperture (S) in an opaque film (S7),
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a
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S Probe
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Figure 5.1: Schematic of the fields involved in the optical reciprocity
theorem. The dark blue drawings represent the PhCW, with the probe
above it sketched in gray. The red arrow and red text indicate the recip-
rocal fields that arise from a dipole (j,..) placed at the detectors. Green
(and red) arrows and text indicate the experimental (and reciprocal) fields,
respectively. Eppc rec and Hppc re. represent the fields on the surface
S (sketched in transparent blue) between the crystal and the probe.

as sketched in Fig. 5.1a. A direct analytic expression for the fields of the
source on P can only be obtained in specific cases. However, the fields
of the source on S can usually be deduced more straightforwardly. Fur-
thermore, in the reciprocal situation (formed by interchanging source and
detector), the fields on S from a source at P can typically also be calculated
with relative ease [96, 97]. In essence, this last step removes the difference
between the source and the detector, and the quantity of interest becomes
the coupling between these two points. Their mutual impedance (coupling
strength) can be found via an overlap integral over the fields on S in both
situations (reciprocal and ‘experimental’) [96, 98, 97]. In this chapter we
describe how the optical reciprocity theorem can be applied to the process
of image formation with a NSOM. We show that without any assumptions
the reciprocity theorem provides a means of describing the measured field
in terms of the in-plane fields alone. Furthermore, by approximating our
probe as a subwavelength hole, we show how we use the reciprocity theorem
to predict the signal measured with an aperture type NSOM. We compare
this signal to the experimental signal. Furthermore, we decompose the sig-
nal into its electric and magnetic contributions, in this manner we extract
a theoretical electric to magnetic sensitivity ratios, which we can compare
to those reported in chapter 4.
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5.2 Reciprocity theorem applied to near-field microscopy

The possibility of using the optical reciprocity theorem to explain near-field
data was first suggested in [98]. Figure 5.1b shows a schematic of the fields
and sources that affect the signal measured by the system. In this figure
Epnc and Hppo are the calculated electromagnetic fields associated with
light propagating in the PhCW. The interaction of these fields with the
probe sets up the fields that we measure at the detector (Eget). The recip-
rocal situation is formed by placing a dipole source (jre.) at the detector.
This dipole emits the fields E,.. and H,.. (see Fig. 5.1b). In this frame-
work the sensitivity of the system is given by how well Ep,c and Hppo can
induce fields (Ege;) that drive a dipole placed at the detector (jre.). This
sensitivity is commonly referred to as the mutual impedance (Eget - jrec)-
The mutual impedance is determined by the overlap integral between the
experimental and reciprocal fields on a plane (S) between the sample and
the detector [97].

Mathematically the mutual impedance of our system can be expressed
as [97]:

Edet(rtip) 'jrec = fS (EPhC(r7 rtip) X Hrec(rv rtip)_
E’r’ec(ru rtip) X HPhC(r7 rtip)) : d87 (51)

where r is the position on the surface S, ry;, is the position of the probe
and dS is the normal vector of S. As long as the interaction between the
probe and the sample is sufficiently weak, we can neglect the effect of the
tip on the fields above the photonic crystal. This allows us to omit ry;, in
Epncr, and HPhC,mp on the right hand side of Eq. 5.1.

Interestingly, from Eq. 5.1, we immediately see that the reciprocal mag-
netic fields give an idea of the sensitivity to the experimental electric fields
and vice versa. A natural choice of S is the zy-plane at a height between
the tip and the PhCW. Hence, due to the dot product with dS, which
is oriented along Zz, and the cross products in the integral, only the in-
plane of the reciprocal and photonic crystal fields contribute to the mutual
impedance. Because near nanophotonic structures typically all components
of the optical field are present (see Sec. 1.2), this observation suggests that
we indeed measure the in-plane components of E and H.
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Figure 5.2: Simulated optical fields below to a subwavelength aper-
ture. All components of the electromagnetic field 10 nm below a glass
hole (D =200 nm) in a 300 nm thick Al film. The gray dashed lines indicate
a cross-section of the probe aperture.

It is worth noting that Eq. 5.1 can be rewritten solely in terms of either
E,cc or H, ., although in these cases one must use the derivatives of these
fields [97]. While this might seem contradictory - how could only E or
only H be measured at the same time by the same probe? - it is actually
expected. After all, Maxwell’s equations tell us that H can be expressed
in terms of the derivatives of E, and vice versa. Consequently, we are free
to choose the form of the reciprocity theorem that yields the most physical
insight concerning our experiments. Hence, we use the form that allows us
to determine the fields and not their derivatives.

To better understand the experimentally obtained signals from the fields
above the crystal, we calculate the reciprocal fields on the surface S. Specif-
ically, we consider the fields below an aperture probe with a varying diam-
eter, computed with the commercially available FEM package COMSOL.
We simplify the calculations by exploiting the similarity of the near fields
below a hole in a metal film to the fields below the probe [72]. To find the
sensitivity of Ly (= Eget - j»), we simulate the fields below a glass hole in a
300 nm thick aluminum film that is illuminated by the fields radiated by
an z-oriented electric dipole that is placed at a distance of 3 pm directly
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above the hole. To find the sensitivity of L, (= Ege;-jy), we use a y-oriented
dipole. We choose the surface S 10 nm below the probe, which is approxi-
mately in the middle between the probe and the sample when scanning the
surface of the PhCW.

In Fig. 5.2 we depict the real part of the fields below a hole with a radius
of 100 nm, resulting from the illumination with a j, dipole oscillating at
a frequency w = 2m¢/1570 nm. These fields determine the sensitivity of
L,. Based on Eq. 5.1, we expect that the magnetic contribution to the
signal on L, will be dominated by H, pyc, because the amplitude of £ ;e.
is much larger than that of E, ;... Further, the mapping of Hy 4. to L,
will be slightly blurred because of the Gaussian profile of Ey ..

The detection of the in-plane electric field is less straightforward to
understand, because the in-plane reciprocal magnetic fields have both com-
parable amplitudes and not Gaussian distributions. However, because the
size of our probe is sub-wavelength, we can to first order interpret the sen-
sitivity in terms of a sum over the fields. Based on these sums we expect to
measure a blurred image of F, ppc as well, because we find that the sum
over center lobe of Hy . is stronger than the sum over the side lobes. Con-
versely, because the sum over H ,.. is negligible, we expect not to detect
Ey pnc on L,. Similarly, we now qualitatively understand that L, detects
Ey phc and Hy ppe-

The prediction of the measured fields requires the numerical evaluation
of Eq. 5.1. In combination with the calculated reciprocal fields, inserting
the fields near a sample into Eq. 5.1, allows us to compute a predicted
signal. Here, we use the calculated fields [38] above the same PhCW as in
chapters 4 and 6. We calculate Ege;(rip) - jrec for an z and a y oriented
dipole over the same range of positions as used in these chapters.

Strikingly, Figs. 5.3a and b reveal that the predicted signals, without us-
ing any fitting parameters, closely match the experimental signals 300 nm
above the PhCW (note that we use the same fields as chapter 4). Fur-
thermore, at all heights, ranging from 20 - 400 nm (not shown), we find
that the fields calculated via this approach neatly match the measured field
patterns.
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Figure 5.3: Sensitivity to electric and magnetic fields versus probe
diameter. a, b The right panels of a and b show the predictions, and
the left panels show the measured fields 300 nm above the PhCW on L,
and L,, respectively. ¢ The light gray line and dots show the |3|/|«| ratio
from the numerically calculated fields and analytical BB fields, respectively.
The dark gray line shows the corresponding electric to magnetic sensitivity
calculated using the numerically calculated fields. The blue and orange
dots show the magnetic to electric ratio obtained from the fits on L, and
L,, respectively, as reported in chapter 4.



5.3 Relative sensitivity to E and H;

5.3 Relative sensitivity to E; and H;

The knowledge of these predicted signals enables the extraction of a the-
oretical value of |3|/|a|. To this end, we compare the amplitude of the
signal from the E; and H) that we expect to measure above the PhCW
used in this work. We express the sensitivity to E; and Hj in terms of all
components involved in the mutual impedance:

ne(h) = Z/AlE

=T,y

/S (H;,Tec(rtipﬂ r, R)E;,Phc’(n h)_

H;,,ﬂec(rtip, r, R)E. pye(r, h)) dS|dU, (5.2)

and

1 % 7
77H(h) = Z \//11_1‘/3 (Ex,rec(rtip7r’ R>Hy,PhC(r’ h)_

1=,y

E;;,rec(rtipv r, R)H;,PhC (I‘, h)) dS| du, (5'3)
where ng(h) and ng(h) are the sensitivities to the magnetic and electric
fields at heights h, respectively, Ag and Ay indicate the amplitudes of the
in-plane fields, and U is the area defined by the intersection of a PhCW
unit cell with the surface S. To find ng(h) we compute the expected signal
from Eppc normalized to the amplitude of Eppe, we integrate that signal
over U, and lastly we average the sensitivity over the two detectors. We
find ng from ng(h), by averaging over all heights. We apply an analogue
procedure to find ng(h), with the use of Eq. 5.3. We find that the ratio
between ngand 7, which describes the relative sensitivity to the electric
and magnetic fields, is close to one for a wide range of probe diameters (see
Fig. 5.3c).

However, this sensitivity still contains the contribution of £, ppc (£, PhC)
and Hy prc (Hy phe) to the sensitivity of Ly (L) respectively, which is not
taken into account in the fitting algorithm used in chapter 4. Hence, we
now compute the same integral, while ignoring these contributions, which
is directly a calculation of | 3] /|«|. The results of this approach are shown in
Fig. 5.3c in light gray. Despite the apparent simplification, the sensitivities
that we find are very similar to those of the full calculation. Furthermore,
the |B|/|a| that we have found in this manner agree very well with the
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Figure 5.4: Sketch of the coordinate basis used. Black arrows indicate
the unit vectors of the coordinate basis used in this section. Purple ar-
row indicate the unit vector used to construct this basis. The blue arrow
indicates the in-plane wavevector of the light.

experimentally observed ratios that we reported in chapter 4 (indicated by
the blue and orange dots in Fig. 5.3c).

We can further simplify our model by calculating the sensitivity of the
probe using the analytic expressions for the fields below a Bethe-Bouwkamp
(BB) aperture [99, 100, 101]. This type of aperture is a highly subwave-
length hole in an infinitely thin, perfect electric conductor (PEC). Unlike
a real metal, such as the aluminum that coats our probe, a PEC does
not support surface modes such as SPPs. Remarkably, despite this fur-
ther simplification, the sensitivities predicted by the BB aperture are in
good agreement with both those calculated using an aperture in an alu-
minum film, as well as with the measurements (see Fig. 5.3c). This is a
further validation of earlier near-field work, where the probe apex has been
approximated by a BB aperture [69].

5.4 Outlook

In this section, we describe a method that could extend the application of
the optical reciprocity theorem to near-field scanning optical microscopy,
such that the signal from the simultaneously detected electric and magnetic
fields could be separated. Specifically, this method could allow for the
extraction of all optical field components from the near field mapping with
a conventional aperture NSOM probe.

Because the two signals (Lz, L,) that an aperture type NSOM probe
measures contain a superposition of four experimental fields (E,, E,, H,
H,), a separation of these fields requires additional constraints. These
constraints could be provided by Maxwell’s equations, which relate the
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electric and magnetic optical fields. Furthermore, the optical fields that
we measure evanescently decay away from the sample under investigation,
which must also hold for the separate field components, thereby providing
an additional constraint.

To efficiently exploit that the experimental fields must follow Maxwell’s
equations and that these fields decay away from the nanophotonic struc-
ture, it is convenient to change coordinate basis and to work in reciprocal
space. To straightforwardly relate the electric and magnetic optical fields,
we move to the following coordinate basis, which is defined by the propa-
gation direction of the light

§= f{H X A, (5.4&)
k iz F w k
pos = —— (5.4b)
ko

Wo = 4 /k‘(z] — k‘ﬁ, (5.4C)

where k| is the in-plane wavevector, the subscript 0 indicates quantities
defined by the wavevector in air, and Pg+, and § are the orientations used,
respectively, for the polarizations of s- and p-polarized light with respect
to the xy-plane [8]. We illustrate the orientation of the vectors in these
equation with the sketch presented in Fig. 5.4.

In this coordinate basis, the Fourier transform of the electric field above
the PhCW is given by:

Epnc(k),2) = (éEi(kH) + f’0+Ei(k||)) eiwoz

) 9.9
(éEi (kH) + po_E" (k”)) e "WoE, (5:5)

Here, the superscripts s and p indicate the component of the electric field.
Because the fields above the photonic crystal have to follow Maxwell’s equa-
tions (Eq. 1.1), we can express the magnetic field in terms of the electric
field (in SI-units)

ER (k) Ei(k))\
Hpno(ky, 2) = (S +Z - Po+ +Z ” )ew’oz—l—
- o (5.6)
Lok ER(R)N g
Zo Po-T '
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This expression highlights the power of the coordinate basis used, as we
have now expressed the magnetic field in terms of the electric field in a
manner that does not require any derivatives. A second simplification in
the expression of the electric and magnetic field can be made by realizing
that wq is purely imaginary and positive, because in Eq. 5.4c both ky and
k) are purely real and we take the positive square root. Hence, in both
Eq. 5.5 and 5.6 the two right terms grow with increasing z, and the two
left terms decrease with increasing z. However, we know that we measure
only evanescently decaying waves and we can omit the two right terms in
Egs. 5.5 and 5.6.

Turning back to the expression for the measured signal that we found
in the main body of the chapter, we can express Eq. 5.1 as follows:

i)y e

where N °“ is a 2 x 2 matrix containing the reciprocal fields, and L(k;z,y)
are the Fourier transforms of the measured fields. Strikingly, this equa-
tion contains only two unknowns. Hence, by inverting Ny a full vectorial
mapping of the electric and magnetic fields above the PhCW can be con-
structed from our measurements. Obviously, for this approach to be viable,
the solution needs to be unique, which is the case if the determinant is not
equal to zero. Furthermore, we anticipate that factors such as experimental
noise will need to be corrected for.

5.5 Conclusions

The excellent agreement of the magnetic to electric sensitivity ratios cal-
culated using the optical reciprocity theorem and the experimentally ob-
served ratios, which we found in chapter 4 to be close to one, confirms that
aperture probes of all investigated radii are sensitive to both E| and Hj.
Furthermore, the reciprocal framework not only explains our data, but can
also be used for future probe designs that selectively detect certain electro-
magnetic field components. In this manner, this work provides a route to
a full mapping of the electromagnetic fields at the nanoscale. Alternatively
a route toward a complete mapping of optical near fields could be provided
by the scheme that we proposed in the outlook section.
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Tracing electric and magnetic optical
singularities in 3D space

In this chapter we investigate the topological properties of the
structured light fields above a PhCW. We simultaneously map
the complex in-plane electric and magnetic fields at different
heights above a photonic crystal waveguide. At each height we
identify phase- and polarization-singularities. We show that the
trajectory traced by each singularity through three dimensional
space s distinct, highlighting the complex relationship between
the electric and magnetic near fields

6.1 Introduction

By structuring optical far fields researchers have gained control over fun-
damental physical aspects of light propagation and the way in which light
interacts with objects. Airy beams, for example, are non-diffracting, ac-
celerating, and self-healing [102, 103], and can be used as robust optical
tweezers to trap and control particles [104]. Structured light can also carry
spin- (SAM) or orbital-angular momentum (OAM) [105, 106] and since
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6 Tracing electric and magnetic optical singularities in 3D space

Figure 6.1: Illustration of phase- and polarization-singularities. a Cal-
culated phase front of a vortex beam. The phase front evolves around the
beam center, where the phase is undefined and a phase singularity occurs.
b The polarization ellipse for the in-plane electric field, showing the ellip-
ticity, £ = u/v, and the angle of orientation 6. The blue line indicates the
end point of the field vector. At any point in space the field vector traces
out an ellipse over time. At a point where the angle of orientation is unde-
fined, which is the case when |u| = |v|, light is circularly polarized and a
polarization singularity occurs. Panel a is adapted from [110].

this momentum can be transferred to, or from, particles [107], such beams
are of great interest for quantum optical [108] and biophysical detection
applications [109].

In a typical vortex beam, which carries OAM, the optical phase evolves
around the center of the beam (see Fig. 6.1a). Because the phase evolves
around the beam center, no phase can be assigned to the field at the beam
center, and this point is known as a phase singularity. Polarization singu-
larities are points in space where a property that defines the polarization
ellipse is undetermined (see Fig. 6.1b). Although the ellipse angle can
be undefined on the entire surface created by the crosscut through a cir-
cularly polarized plane wave, polarization singularities (C-points), which
carry SAM, can only be present when, on a crosscut through the opti-
cal field, the interference of multiple plane waves creates points of unde-
fined ellipse angle [111]. Importantly, the effect of OAM or SAM carrying
phase- and polarization-singularities on an object (i.e. spinning a particle
or driving an angular momentum changing transition) is determined by the
object’s position relative to the singularity.

There are clear benefits in bringing the structure of light to the nanoscale,
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6.1 Introduction

particularly for applications [112], since quantum and biological objects are
frequently of this size. Even better, the light can be structured at the
nanoscale due to its interaction with nanophotonic structures such as pho-
tonic crystals or hole arrays. Not only does this nanophotonic approach
open up new routes to electro-optical devices, but it also allows for control
over the light fields by using a lithographically-determined geometry. For
example, using nanopatterned launchers researchers have created Airy plas-
mons [102], while the near-field mappings of ridge waveguides and PhCWs
have revealed phase- [113] and polarization singularities [67], respectively.

In the aforementioned experiments, however, the near fields were all
imaged at the surface of the samples. Yet each of the many evanescent
waves that combine to create the optical-field distribution near a nanopho-
tonic structure has a different out-of-plane decay constant (see chapter 1).
Consequently, the superposition of these waves results in markedly different
light-field distributions at different heights, which can even differ between
the electric E and magnetic H fields, as we demonstrated experimentally
in chapter 4. This is in contrast with the far field where, for example, the
position of a vortex within a beam does not change as it propagates through
space. Conversely, in the near field, theoretical studies have predicted that
lateral positions of features such as vortices can be strongly dependent on
the height above the surface [114]. Knowledge of the 3D trajectories of spe-
cific structure in the near fields of nanophotonic objects is crucial if their
light fields are to be used.

In this chapter we report on the 3D spatial evolution of optical singu-
larities in the electromagnetic near fields of a PhCW. Specifically, we ex-
perimentally find phase- and polarization-singularities in both the in-plane
electric and magnetic near fields, and we show that the singularities in
the electric an magnetic fields follow different trajectories through space.
Our observations are in excellent agreement with rigorous electromagnetic
simulations.

A PhCW is an ideal structure for our investigation. First, this type of
waveguide is routinely used to control the flow of light [33], and can be fab-
ricated with extremely high quality and precision. Further, the near-field
distributions of these crystals can be readily calculated [38], are finely struc-
tured, and are known to contain electric polarization singularities at the
surface [67]. In essence, PhCWs support fields with nanoscopic structure,
while inherently guiding photons to, and from, these features.
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6 Tracing electric and magnetic optical singularities in 3D space

Furthermore, the evolution of the PhCW near fields through 3D space,
and hence the fine structure that they contain, can be extremely complex.
Consider that, at the plane of symmetry at the center of the silicon slab,
and only there, the PhCW mode is purely TE, and only E,, E,, and H,
have a nonzero amplitude. Moreover, this mode is highly structured as it
is consists of many different Bloch harmonics, each decaying at a different
rate [42]; the larger the wavevector of a harmonic, the quicker it decays.
So, far away from the surface we are left with a weak, unstructured light
field. Conversely, in the near field, we find nonzero amplitudes in all 6 near-
field components, and observe that their profiles can greatly vary. Such a
metamorphosis of the field distributions cannot be found in far fields, and
consequently it is reasonable to expect that the fine structure of these near
fields might also evolve in a unique manner.

6.2 Separating E and H,

We image the in-plane components of the electromagnetic field near our
PhCW using an aperture type home-built polarization- and phase-sensitive
NSOM. The signal from our aperture probe contains both the in-plane
electric and the magnetic near fields, and we are able to characterize the
efficiency with which it picks up both (see chapter 4).

To separate the four in-plane components of E; and H), we have to
essentially untangle our NSOM measurement that provides two signals both
containing a superposition of one electric and one magnetic component.
This is not a trivial problem since, as described by Eq. 4.1, we only detect
2 signals, which we label L, and L, (which are associated with fields that
are, ideally, orthogonally polarized), but those two contain information
from 4 fields: E,, E,, H; and E,. Since in Eq. 4.1 we have four unknowns
and only two equations we clearly require another set of equations to find
the separate distributions of E; and Hy.

Before we separate the different near-field components from our mea-
surements, however, there are a couple of preliminary steps to our data
processing that occur to eliminate unwanted signals (such as, for example,
reflections in the waveguide). We begin by filtering our data in k-space
to isolate the forwards-propagating mode (see chapter 2). Next, because
of a slight polarization mixing in our NSOM, we measure a small part of
the L, signal in the L, channel (see chapter 3). However, we can exploit
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6.2 Separating E and H

the symmetry of the different field components to separate the two contri-
butions (see chapter 3). That is, we mirror the signal about the center of
the PhCW and hence separate the field distributions with odd symmetry
(Ey and Hy), from those that we want, which have even symmetry (for
example, the presence of £, and H, introduced by polarization mixing in
the fiber of the probe, or by asymmetries of the probe itself).

Having cleaned up the signal by removing reflections and field compo-
nents from the other channel we now separate E from H). As we noted
above, we have four unknowns in Eq. 4.1 and consequently we need two
more equations that relate EH to H) at each position in space. We can em-
pirically recover such a relation from our calculations of the PhCW modes
(shown in Fig. 6.2), which we write as

Hy (I‘) = Tz (I‘) E, (I‘) s (6.1&)
Hy(r) = y(r)Ey(r). (6.1b)

Substituting these equations into Eqs. 4.1, allows us to solve for the electric
field
Ly (r)
E,(r) = on T Bura (0 (6.2a)
Ly (r)

Ey (r) o T By () (6.2b)
where o, and 3, are the experimentally determined parameters that
characterize the efficiencies of our probe, and ~, , (r) are found from nu-
merical simulation of our structure. Once the electric fields are known, we
can use Egs. 6.1 to solve for the magnetic fields.

Figure 6.2 shows the calculated in-plane fields 110 nm above the surface
of the PhCW, together with the fields extracted using Eqs. 6.2a and b. At
this height, unlike just above the surface, the profiles of the electric and
magnetic fields are noticeably different (see also chapter 4).

In each frame we depict either the amplitude A (r) or the phase ¢ (r)
of the in-plane field components (E,, Ey, H,, and H,), with the left half
(y < 0) taken from fully vectorial 3D calculations (with no fitting param-
eters) [38] and the right half (y > 0) derived from the measurements. As
expected due to the symmetry of the PhCW the amplitudes of all com-
ponents are mirrored about the center of the waveguide (y = 0), while the
phases of E, and H, show an odd symmetry, and those of E, and H,
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6 Tracing electric and magnetic optical singularities in 3D space

E c H

y X
Calc. = Exp. — < Calc. = Exp.

Figure 6.2: Amplitude and phase of the in-plane fields 110 nm above
the PhCW. a-d Calculated and experimentally observed amplitude, with e-
h corresponding phase distributions of the in-plane electromagnetic field
components. The relative scaling of the amplitudes is shown in the bottom
right corner of a-d, and the locations of the holes of the PhCW are indi-
cated by the dashed blue curves. In e-h lines of constant phase are shown,
and the phase singularities (denoted by solid symbols on all frames) occur
where these lines intersect. In each frame we present the fields of 2 unit
cells, marking the phase singularities in one of the unit cells. Calculations
are shown on the left half of each frame, while the right half depicts the
measurements.

show an even symmetry, about this axis. The excellent agreement between
the measurements and the calculations nicely demonstrates the successful
separation of the electric and magnetic near fields.

6.3 Identification of phase singularities

Within each unit cell, for every field component at this height, we find 2
pairs of phase singularities, which we label pt” and p%” (e.g. in Fig. 6.2a
and e). In addition a line of undefined phase that necessarily occurs at
y = 0 for the odd-symmetry components (E, and H,) where the amplitude
is 0. The phase singularities are points of undefined phase , and they can
be found in the phase distributions shown in Figs. 6.2e-h at locations where
contours of constant phase intersect. We also show the position of the phase
singularities in the field amplitude maps (see Figs. 6.2a-d), where they are
necessarily found at points of 0 amplitude [112].
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6.4 Height evolution of phase singularities

E., E, H, H
PP+ -1 a1 41
pg 1 41 41 -1
py | -1 +1 +1 -1
/7o IS RS RS R |

Table 6.1: Topological charge of the phase singularities in the in-plane
fields.

FEach phase singularity carries a topological charge

1
§= 5o g dep, (6.3)
where C' is transversed in a counter-clockwise manner [112]. In the far
filed, this charge denotes the number of units of OAM carried by the sur-
rounding light fields. From the phase maps we calculate that for all phase
singularities s = 41 (see Tab. 6.1), and hence the total charge of each unit
cell is zero?.

Interestingly, we observe that the phase singularities are located at dif-
ferent position for the different field components. While in all cases p, and
p, are separated by half a period in z, and indeed do not move in z as a
function of height, they are found at differing 4’s. For example, p¢ of E, is
found at = 0 and y = (—0.56 & 0.07) a, while for H, it is at + = 0 and
y = (—0.66 £ 0.07) a. Here, the error is determined by the resolution of our
measurements.

6.4 Height evolution of phase singularities

We follow the trajectories of the phase singularities, through 3D, space by
repeating our measurements at heights ranging from 20 to 400 nm above
the PhCW. In Fig. 6.3 we present these trajectories for all four phase singu-
larities of the different in-plane fields, depicting both experimental (sym-
bols) and calculated (curves) results.

Because the symmetry of the PhCW about y = 0 ensures that each
phase singularity is also mirrored (e.g., p! and p are equidistant from the

“While the edge dislocations at the center of E, and H, have an undefined s, since
there is no way to close a loop about them.
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6 Tracing electric and magnetic optical singularities in 3D space
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Figure 6.3: Trajectories of phase singularities. a Shows trajectories of p,
and b of p, for all in-plane field components. In both panes the trajectory
of the phase singularities determined from theoretical modeling is given
by the solid curves, while the corresponding experimentally measured po-
sitions are shown by the symbols. The error bars represent the resolution
of our measurements.

center of the waveguide), we only show the position of one phase singularity
from each pair, for each component. For our waveguide, we find that the
position of these phase singularities can vary from y = +190 nm to y =
+890 nm over the 400 nm of height that we investigate. Interestingly,
near our PhCW the trajectory that a phase singularity for a particular
field component follows is distinct. This observation is in contrast to far
fields, where typically a clear relationship between the positions of the
phase singularities exists. Furthermore, in the near field of the photonic
crystal, we can identify heights at which the phase singularities of two field
components can be found at the same point (e.g., pf of £, and E, at a
height of 100 nm, or of H, and H, at a height of 150 nm).At other heights
the separation between the phase singularities can be greater than the 10’s
of nm’s of a typical quantum structure, or even larger than the 100’s of nm
of classical objects like our near-field probe.

6.5 Identification of C-points

In the rich structure of the PhCW light fields, phase is not the only quantity
that can be singular. As shown by Burresi et al. [67], we can also find
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0
yla

Figure 6.4: Amplitude, orientation and elipticity of the in-plane opti-
cal fields 110 nm above the PhCW. a-f The amplitude, angle of orienta-
tion and ellipticity of the in-plane electric fields (a-c) and in-plane magnetic
fields (d-f), respectively. The scaling factors of the field amplitudes are

shown in the bottom right corner of b, e. The polarization singularities,

" and ¢4, are marked by symbols in a-f. Lines of constant &, which in-

tersect at the polarization singularities, are shown in c, e, as are lines of
linear polarization (L-lines) in c, f.

polarization singularities in these near fields. Unlike phase singularities,
which can be found in individual vector components of the electric and
magnetic fields, PhCW polarization singularities are properties of the total
in-plane electric, or magnetic, field.

The end point of the field vector, at any point in space, traces out an
ellipse over time (see Fig. 6.1b). This ellipse can be characterized by its
ellipticity,

¢(r) = tan {sin_1 [sin (2¢ (r)) sin (6 (r))] /2}, (6.4)

which denotes the ratio of the short to long axis, and which ranges from +1
(right-circular polarization) to -1 (left-circular polarization) and represents
linear polarization when £ = 0, and its orientation angle,

0 (r) = {tan~" [tan (2¢ (r)) cos (6 (r))]} /2, (6.5)

which ranges from +7/2 to —7/2. In these equations ¢ (r) = tan™! [A4, (r) /A, (r)]
and § = ¢, (r) — ¢y (r), and A (r) and ¢ (r) are the amplitude and phase,
respectively, of either E or H.
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6 Tracing electric and magnetic optical singularities in 3D space

In Fig. 6.4 we present the amplitude, 6 and £ of the in-plane electric and
magnetic fields, measured 110 nm above the surface of the PhCW, in which
we look for polarization singularities. Polarization singularities are points
where either the handedness (sign of £) or orientation () of the polarization
are undefined. The former occur where the polarization is linear (§ = 0),
which occur on lines. These lines are therefore known as L-lines. The latter,
polarization singularities, are of particular interest, as in two dimensions
they occur in points — so-called C-points— where the optical fields carry
spin angular momentum. In analogy to phase singularities, polarization
singularities are found where lines of constant € intersect (see Fig. 6.4b, e),
and where the polarization is circular (£ = £1 in Fig. 6.4c, f).

We find 4 C-points per unit cell, which we denote cf’T and cé’r. As
we see from the & maps in Fig. 6.4c, f, each pair of C-points contains
polarization singularities of both handedness’, as is required for C-points
that are separated by an L-line (see Fig. 6.4c as an example). For example,
for the electric field, the polarization at ¢! is left-handed while at ¢! it
is right-handed. We note that only at ¢, of the electric field does the
associated out-of-plane component vanish (i.e. E, — 0), and hence only
this point is a true polarization singularity in 3D space. Interestingly, we
find points ¢, in regions of high in-plane field amplitude. In analogy with
the phase singularities, about which a nanoscopic object would rotate, an
object placed a C-point would begin to spin (in place). Likewise, it is
important to know if the object is electric or magnetic in nature since the
C-points associated with the electric and magnetic fields are typically found
in different locations.

Each of the C-points that we have identified in the near fields of the
photonic crystal has, in addition to a handedness, a type and index [115].
Both the type and index can be determined by looking at how the orien-
tation of the ellipse varies and in the area about the C-point. In Fig. 6.5
we show the long axis of the polarization ellipse for both the electric and
magnetic fields, at a height of 20 nm above the PhCW.

In each frame we outline the lines traced out by the ellipse orientation,
as one moves away from the C-point. From this figure we see that, near c;
(blue curves), the pattern of the orientations of the ellipse has a three-fold
symmetry, corresponding to a star-type C-point [115]. By tracing out the
way 6 changes about this point (in Fig. 6.4), we see that the index of this
C-point is —1/2. Likewise, from the area near cp (red curve), we see that
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Figure 6.5: Electric and magnetic polarization ellipse orientations.
Calculated orientations of the long axis of the polarization ellipse, 20 nm
above the PhCW. The star shape of c; is outlined in blue, and the lemon

nature of ¢y in red. Note that the unit cell has been shifted by —0.5 z/a,

relative to Fig. 6.4, to place c; in the center along x of the image.
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6 Tracing electric and magnetic optical singularities in 3D space

¢o is a lemon-type C-point with an index of +1/2. We find that for ¢; and
co the type and index are the same for the electric and magnetic fields.

6.6 Height evolution of C-points

Now that we have identified and characterized the C-points at the surface,
we follow their trajectory through 3D space (see Fig. 6.6). This figure
illustrates that the trajectory of each C-point is unique. As is evident from
this figure, while polarization singularities appear as points in a given plane,
in 3D space they trace out lines (while L-lines trace out surfaces). Following
these trajectories is particularly important for ¢,, which are located regions
of high field, but which are also only found relatively close to the PhCW. In
the electric field, we find polarization singularities up to a height of about
175 nm, while for the magnetic field they are present up to about 275 nm.
The vanishing of polarization singularities, without annihilation [116], is
intriguing as analogous behavior has neither been observed nor predicted
in the far field. Further, we observe that the trajectories of ¢! and ¢! diverge
for both E and H, suggesting that if one wishes to only sample the local
properties of the fields then working at greater heights is desirable. For
example, the separation between ¢! and ¢, which we denote Ay, is only
160 nm at a height of 20 nm above the PhCW, but it grows to 250 nm at
a height of 170 nm. We recall, however, that the fields are evanescent and
hence their amplitude decreases at greater heights, suggesting a balance
between C-point separation and field amplitude that would need to be
struck in a potential application. For example, in chapters 7 and 8 we
demonstrate that this balance is very relevant for the nanophotonic control
over circular dipoles.

Figure 6.7a shows the calculated amplitude of the in-plane electric field
at the location of the C-points shown in Fig. 6.6, as a function of height.
As expected, because the light fields evanescently decay away from the
surface of the PhCW, the field amplitude rapidly decreases for increasing
heights. A closer inspection of this figure reveals that the fall-off of the
field amplitude is not a single exponential, but instead has a more complex
form [42]. This deviation from exponential decay is particularly evident
from the amplitudes found for cg’r (blue curve), which appear to have a local
minimum at a height of ~ 100 nm and then to increase for larger heights.
The complex behavior of the field amplitude at the C-points occurs both
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Figure 6.6: Trajectories of the polarization singularities. The left side
shows two of the polarization singularities of the in-plane electric field, and
the right side shows two of the in-plane magnetic field. Both calculations
(curves) and measurements (symbols) are shown, and the error bars on
the latter are due to the experimental resolution.

because, as discussed in the main text, the field distributions themselves
are height dependent, and because the position of the C-point within the
field distribution changes for different heights. This is easier to see in the
insets to Fig. 6.7a, which show the value of |E;| at the location of the C-
points, relative to the maximum of |Ej[, for each height. As can be seen
for ci’r (top inset), the polarization singularities move towards the points
of maximum in-plane E at larger heights. Conversely, Cg’r scan across an
oscillatory feature of the field and so their normalized amplitude, while
always much smaller than that of cﬁ’r, also oscillates. Similar observations
can be made for the C-points in the magnetic field, shown in Fig. 6.7b.
Combined these observations emphasize the intricate 3D evolution of the
polarization singularities near a nanophotonic structures, which can even
differ between the electric and magnetic polarization singularities.

6.7 Conclusions

In summary, we identify two types of singularities in the near fields of a
photonic crystal waveguide and we directly observe the trajectories that
these singularities follow through 3D space. Our results are in excellent
agreement with calculations, and they highlight the nontrivial relation be-

81



6 Tracing electric and magnetic optical singularities in 3D space

a b
0.20
Y el ° L‘f”
S 085 N 054 7\ 50.95 <
) \ < 0.80 ,E \\ E
N . N
£ 0.154 \ § 075 ‘S 044 \ Eo.ss .
8_ \ O Q \ 5 .
- > 070{ « ; 2 L.
o p 0 100 200 b 078
Y o h = \ 100 200 300 o
B ool \ (nm) cbr 5 031 . h (nm) ek
2 : \ 0.24 £ 503
S \ S I: \
w LN € 0.16 =024 < o2
~ N < =~ . :
i 0.05- E o008 T N 501
— = S - LN z
N Z0.00 01 e % 200 400
AN . 200 400
a o hm) - . h (nm)
0.00 T , St 0.0 —&—2 .= 8o .n o oa
0 100 200 300 400 0 100 200 300 400
h (nm) h (nm)

Figure 6.7: Height evolution of C-point amplitude. a, b Show the in-
plane electric (a) and magnetic field (b) amplitude, at the positions corre-
sponding to the C-points shown in Fig. 6.6, relative to the maximum am-
plitude of the in-plane electric (a) and magnetic fields (b) 20 nm above the
surface of the PhCW. In a, b the insets show the electric field amplitude at
the C-point relative to the maximum in-plane amplitude for each height.

tween the electric and magnetic near fields of nanophotonic structures.
That is, using nanoscopic geometry, it is possible to create sub-wavelength,
fine structure in light fields that behaves in a manner that cannot always be
reproduced in the far field. Thereby this work paves the way for a unique
nanophotonic control over the transfer of SAM and OAM to nearby par-
ticles. Furthermore, in the following two chapters we extend the insights
into the structure and evolution of nanoscale light fields to help unlocking
a nanophotonic system that allows for on-chip entanglement between the
spin of a quantum emitter and the path of a photon.
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Toward a scalable solid-state to
photonic-qubits interface

Controlling photon emission by quantum emitters with nanos-
tructures is crucial for scalable on-chip quantum information
processing. Nowadays nanoresonators can affect the lifetime of
emitters and ultimately induce strong coupling between the emit-
ters and the light field, while nanoantennas can control the direc-
tionality of the emission. Expanding this control to the manip-
ulation of the emission of orbital angular momentum-changing
transitions would enable a coupling between long-lived solid-state
and photonic qubits. As these transitions are associated with
circular rather than linear dipoles, achieving such a coupling
requires an excellent understanding of the nanophotonic control
over circular dipoles. Using a classical analogue, we experi-
mentally map the coupling of circular dipoles to the modes in a
PhCW. We show that depending on the local helicity the dipoles
can be made to couple to modes either propagating to the left or
to the right. The maps are in excellent agreement with calcula-
tions. Our measurements, therefore, demonstrate the coupling
of spin to pathway with near-unity (0.8 £ 0.1) efficiency.



7 Toward a scalable solid-state to photonic-qubits interface

7.1 Introduction

Control of the emission properties of circular dipole sources, where the
phase of the orthogonal linear dipole components cannot be neglected, with
a scalable nanophotonic interface would constitute a tremendous step to-
ward viable, on-chip quantum information processing. This control would
allow for manipulation of the emission properties associated with the long-
lived spin states of solid-state emitters, such as quantum dots [117, 118,
119, 120] and nitrogen vacancy centers [121, 122, 123], as their orbital an-
gular momentum-changing decay to specific spin states is associated with
the helicity of circular transition dipoles [124] (see Fig. 7.1). Furthermore,
if we interface nanophotonic structures with spin qubits, all the lessons
learned from the study of how such structures interact with linear dipoles
to, for example, control their decay rates [48, 43, 125] or the directionality
of their emission [126, 127] could be immediately applied. With such an in-
terface we could couple, or even entangle, solid-state emitters to photonic
pathways, essentially encoding the quantum information of a long-lived
solid-state qubit onto a versatile photonic qubit [128, 129], allowing for a
new avenue toward quantum information processing elements.

Clearly, tremendous benefits can be obtained from a controlled interface
of nanophotonics with spin-states of emitters. Ideally, such an interface will
be deterministic, meaning that all emission is into the desired modes of
the nanophotonic structure and not into free space, and that each distinct
spin state of the emitter is coupled to a single photonic pathway. The
former requirement can be met by, for example, placing a quantum emitter
inside a photonic crystal waveguide, which enables the extraction of over 98
percent of the QD emission [131]. The latter requirement has, to date, not
been demonstrated, although researchers have recently shown preferential
emission of QDs situated at the crossing of two ridge waveguides [124]. It
was shown that, depending on the helicity of its circular transition dipole,
a QD preferentially emits into two of the four exit waveguides.

For a deterministic interface of emitter spin to photon pathway, detailed
knowledge of the projection of a circular dipole onto the optical eigenstates
of a nanophotonic structure is required. Specifically, because these opti-
cal eigenstates are typically highly spatially structured (see Sec. 1.2) and
can contain local helicity [67], a realization of such an interface requires a
spatial mapping of the projection of circular dipoles to these optical eigen-
states. Evidently, such knowledge is key if the emitter is to be correctly
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Figure 7.1: Schematic of dipole mediated transitions. Sketch of an
emitter decaying from its excited state |e), to its ground state |g). The
ground and the excited state electron have the same spin, for example
ms = —1. The transition between the two levels results in the emission of
a photon. The associated transition dipole (middle row) arises due to the
redistribution of charges in the emitter during the transition. a A transition
that does not change the emitters total angular momentum. Such a tran-
sition is mediated by a linear transition dipole. b Sketch of an emitter pre-
pared in an excited state that is a superposition of my; = —1, ms = +1,
decaying with equal probability to either of the two ground states [130].
This decay is associated with a circular transition dipole, as sketched in the
middle row, and the emission of a circularly polarized photon [130].
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7 Toward a scalable solid-state to photonic-qubits interface

positioned. In practice, the fine details of the optical modes are highly
dependent on the geometry of the nanostructure, and hence are sensitive
to imperfections. Moreover, fabricating emitters in precise locations on
nanophotonic structures is a complex and challenging procedure, which ul-
timately imposes additional constraints on the feasibility of a solid-state
to photonic-qubit interface. For example, the interaction of the nanopho-
tonic structure and the emitter must be relatively constant over an area
defined by the precision with which the emitter can be placed, typically on
the order of tens of nanometers [132, 133]. Consequently, a demonstration
of viable nanophotonic interface for solid-state and photonic qubits must
fulfill two requirements. First, efficient and directional coupling between a
circular dipole and a photon pathway must be observed on a real nanopho-
tonic structure. Second, a full spatial mapping of the interaction of the
dipole and this structure must be created.

Here, we use a classical, tunable dipole source to demonstrate near-
perfect coupling of helicity to photon pathway in a PhCW. First, we exper-
imentally show that the radiation from the tip of a near-field optical micro-
scope probe can mimic that of a linear transition dipole. Subsequently, we
extend this method to emulate the emission of a circular transition dipole,
i.e. one that is associated with a change in the emitter’s spin state. By
scanning this tunable source we create high resolution spatial maps of its
emission into the PhCW, for different circular dipoles. We show that the
helicity of the light emitted by such circular dipoles in combination with
the unique local helicity of the photonic eigenstates of the PhCW leads to
efficient and deterministic directional emission. We underpin these exper-
imental observations with a rigorous theoretical framework that describes
the radiation of circular dipoles near a PhCW. Because the emission of a
photon by a transition dipole and a classical dipole into a PhCW is identical
in the weak coupling limit, our result demonstrates that scalable spin-to-
pathway coupling is possible.

7.2 Emission control with photonic crystal waveguides

The way in which an emitter, and in particular a quantum emitter, ra-
diates when placed near a nanophotonic structure is a subject of intense
research [48, 43, 125, 126, 127, 134, 135, 136, 47]. The decay of a two-
level system, an inherently quantum process, is associated with a transition
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7.2 Emission control with photonic crystal waveguides

dipole (sketched in Fig. 7.1), which arises due to charge redistribution that
occurs in the emitter during the transition. The radiation of the transition
dipole is identical to that of a classical dipole, except that a transition dipole
only exists for the duration of a single radiation event. As we discussed in
chapter 7, when an emitter is placed near a nanophotonic structure the
radiation probability of the transition dipole is altered by the number of
photonic states into which it can emit.

To find the emission enhancement by a PhCW we make use of a Green’s
function formalism. Assuming that the emission of a nearby emitter is com-
pletely into the PhCW its Green’s function can be found analytically [47].
We extend the Green’s function found in [47], to separate the effect of the
left- (L) and rightwards (R) propagating modes on the radiation of the
emitter. That is, we write

iawng (w)
4c
where er, r (r,w) are the electric (magnetic) fields of the normalized left-
and right-propagating modes of the PhCW that interact with a dipole,
whose orientation is indicated by the unit vector d. This dipole can be
electric (P) or magnetic (1) in nature, or both. In accordance with [47] we
normalized ey, g (r,w) such that [ |eg (r,w)|* eg(r)dr = 1, where ¢4 is the
relative permittivity at the dipole location. We insert Eq. 7.1 into Eq. 1.8,
and project onto a purely electric dipole. In this manner we straightfor-
wardly find the emission enhancement of an electric dipole relative to free

space

Grp(r,riw) = (err(rw)@el p(rw),  (7.1)

. 3rctan, (W) .
Frr(p,r,w) = 3meang (w) p* - err (r,w)*.
2w2\/€q (r,w)

From Eq. 7.2 it is clear that for perfectly directional emission into the
PhCW we need |p* - e, (ro,w)| = 1 and |p* - er (rg,w)| = 0, or vice versa,
for certain positions rg. For circular dipoles to maximally directionally
emit into the PhCW, therefore, we require positions where the left and
right propagating modes are circularly polarized, but with the opposite
helicities.

Photonic crystal waveguides, by virtue of their highly structured near-
field distributions that locally sample all in-plane vectorial field orienta-
tions [67], seem ideally suited to couple emission to pathway. Our PhCW

(7.2)
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Figure 7.2: Calculated linear dipole emission enhancement factors.
Calculated enhanced emission factors FP= and FPv (for light traveling to
the left) for z- and y-oriented electric dipoles, respectively, placed in the
center of the PhCW. Blue circles indicate the edges of the holes in the
PhCW. The scaling factor indicated in the top left of each panel scale the
panels maximal to 1.

consists of a 200 nm thin Si slab, perforated with a hexagonal lattice
(420 nm periodicity) of 110 nm holes. The innermost row of holes (com-
pared to the line defect) is shifted outwards by 45 nm and the second row
in shifted inward by 30 nm. As an example of the highly structured near
fields in this structure, we show the calculated emission enhancement in
the center height of the slab for X and ¥ oriented linear dipoles in Fig. 7.2.
Importantly, for both dipole orientations, the maps of the linear dipole
emission modification factor Fr (Pgy) (not shown) are identical to those
of Fr, (Pzy). So for a linear dipole the emission near the PhCW is not
directional.

7.3 Mimicking linear dipole emission

We mimic the behavior of a dipolar emitter using the emission from a
190 nm wide, NSOM probe, which is known to act as a continuous transition
dipole [58, 57, 137] (see Fig. 7.3b). We raster scan the probe in the sample
plane at a height of 20 nm above the slab. While scanning, we collect
the light coupled to the waveguide in a heterodyne detection scheme that
gives us access to its phase (see Fig. 7.3a). We use the phase information
to Fourier filter unwanted reflections from the waveguide end facets (see
chapter 2), mapping out the emission into both the left- and rightwards

propagating modes, Dy, (&, r) and Dp (&, r), respectively.

Because we wish to couple helicity to path, we need to confirm that we
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7.3 Mimicking linear dipole emission

Figure 7.3: An illumination-mode NSOM mimics dipolar emission into
a PhCW. a Schematic of the near-field scanning optical microscope, op-
erating in illumination mode, that acts as a dipolar source. Light (with a
wavelength of 1575 nm) from a continuous-wave laser is split into refer-
ence and signal branches with the ratios shown. The polarization of the
light in the signal branch, and hence the orientation of the dipole mim-
icked by the NSOM probe, shown in b, is controlled by a the polarization
control scheme (dashed gray rectangle) that includes a half-wave (\/2), a
liquid crystal (LC) and a quarter-wave (A/4) plate. Light that couples to
the PhCW travels to the left, or right, where it is detected in Dy, and Dg,
respectively, in an interferometric manner. b SEM image of the near-field
probe used in this work, with a 200 nm scale bar.

can control the orientation and phase of our dipole source. We start by
showing that we can create any linear dipole, in this case by varying the
orientation of our dipole from X to §. At this wavelength the PhCW inter-
acts with magnetic dipoles in much the same way as it does with electric
dipoles (see chapter 4). Consequently, we limit the following discussion to
electric dipoles. We vary the orientation of the dipole by controlling the
polarization of the light that we inject into our near-field probe. The linear
dipole emission maps are presented in Fig. 7.4. These emission maps show
that X and § oriented dipoles emit in drastically different ways into the
PhCW, but as expected we do not observe directional emission: the emis-
sion exhibits no left-right asymmetry. These measurements are in excellent
agreement with the calculations 20 nm above the PhnCW slab (see Fig. 7.4).
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Figure 7.4: Dipolar emission into a PhCW. Emission maps collected with
the left (Dy, left column) and right (Dg, middle column) detectors, to-
gether with the calculated emission enhancement maps for linear dipoles
20 nm above the PhCW slab (F7, g, right column), at 1575 nm with linear
dipoles (orientation indicated by the black arrows). Line traces are taken
along the white dashed lines shown in the graphs on the right, with the
blue (green) lines corresponding to line traces through Dy (Dg). Grey
lines show cuts through the calculated F'P= (bottom panel) and FPv (top
panel). In all maps, light blue circles indicate the holes of the PhCW and
blue dashed lines mark the center of the waveguide.

7.4 Mimicking circular dipole emission

To create circular dipoles, such as those associated with orbital angular
momentum-changing transitions (see Fig. 7.1b), we need to control the
phase of our dipole source. Hence, we add a liquid-phase plate to our
polarization control optics (LC in Fig. 7.3a), which allows us to create
d = (P, = ipy) /V/2 sources (see appendix A). This polarization control
enables us to experimentally map the emission control over circular dipole
sources offered by the PhCW.

Strikingly, both the measured Dy g and the calculated Fj, g for these
circular sources (see Fig. 7.5) exhibit a pronounced asymmetry, which was
absent for the linear dipole sources. In fact, we observe that flipping either
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Figure 7.5: Emission of circular dipoles. Experimental and calculated
emission maps of right- (top row) and left-handed (bottom row) circular
dipoles. In each row the two left (right) panels depict experimental (theo-
retical) emission maps. The line traces (taken along the white dashed line)
correspond to cuts through Dy, (blue) and Dg(green), and are shown to-
gether with calculated cuts through F, (dark gray lines) and F'r (light gray
lines). In all maps, light blue circles indicate the holes of the PhCW and
blue dashed lines mark the center of the waveguide.

the direction of the detector path (i.e. monitoring either Dy, or Dpg) or the
dipole helicity ((px — iPy) /V/2 or (Ps + iDy) /V/2) results in a mirroring of
the emission map about the middle of the waveguide (y = 0, dashed blue
lines Fig. 7.5). For example, the emission of a right-handed dipole (top row
of panels Fig. 7.5) is predominantly to the left when the dipole is placed over
the bottom half of the waveguide (y < 0), and to the right when the dipole
is located in the top half (y > 0). We take line cuts (along the dashed
white lines in Fig. 7.5) to illustrate the high degree of coupling between
helicity and direction. For both dipole handednesses maximal emission in
one direction corresponds to a minimum in the other.
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7 Toward a scalable solid-state to photonic-qubits interface

7.5 Helicity to pathway coupling strength

To compute the coupling strength between helicity and path we compute
the directionality of the emission from the experimental emission maps.
That is, we define the directionality, 14, as follows:

Dy, <aLCP> — Dgr (aLCP> Dy, (aRCP) — Dg (aRC’P>
Ndir (ra W) = < ~ - ~ - )
Dy, (dLC’P) + Dr (dLCP) Dy, (dRCP) + Dr (dRCP)
(7.3)
where LC P and RC'P indicate left- and right-handed dipoles, respectively.
Strikingly, the line traces and maps of 74;-(r) (see Fig. 7.6a, b) reveal that
large areas of near-unity dipole helicity to path coupling are available above
the waveguide. We support these observations by calculating the theoretical
Nair, using Eqs. 7.2 and 7.3 with d = (p, + ipy) /V/2 (directionality maps
and line traces are shown in Fig. 7.6a, b). Importantly, these calculations
are in excellent agreement with both the measured 74;,- maps and line traces,
and reveal a helicity-to-path coupling as large as one. The contour lines
plotted in Fig. 7.6c emphasize the large size of the areas of the near-unity
directional coupling.

However, because 74;, only measures the directionality and contains no
information about the efficiency with which photons are emitted to the
PhCW, n4;-(r) can still be unity even though very little light is actually
emitted to the PhCW. Hence, for our approach to dipole helicity to pathway
coupling to be a viable route toward on-chip quantum technology, not only
the directionality but also the emission rate itself needs to be maximized.
Therefore, we define the directional coupling efficiency (n),

[DL (aLCP> — Dp (aLCP)} - [DL (aRCP> — Dpg (aRCP)}
2D max ’
(7.4)

where Dy is the maximum intensity found in any of D, (&ch) ,Dpr (&ch) ,

U(TM) =

Dy, (&ch) and Dg (&R(;p). If n(r,w) = 0, either the chance of emitting
a photon left and right is equal, or no photons are emitted into the PhCW.
Conversely, if | (r,w)| = £1, then at spin is both deterministically cou-
pled to path and a circular dipole emits maximally. Fig. 7.6d (left panel)
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Figure 7.6: Helicity-to-path coupling strength and efficiency. a, d Ex-
perimental (left) and calculated (right) maps of 74;,- (@) and 7(d). b, e Line
traces along the green (left panel) and red dashed lines (right panel) in
a (shown in b) and d (shown in e). Grey shaded region indicate where
[nair| , In| > 0.8. ¢, f Orange contours show regions where |14;-| > 0.8 (c)
and || > 0.8(f). Ina, c, d, f black circles indicate the holes in the photonic
crystal membrane.

presents 7 (r,w) determined for the individually measured emission maps
shown in Fig. 7.6. Astonishingly, we still observe relatively large regions
where the helicity of the dipole almost perfectly determines the pathway
that a photon will take, both to the left (n — 1, red regions) and to the
right (n — —1, blue regions). In fact, we observe a maximal helicity-to-
pathway coupling of |n|;"? = 0.8 £ 0.1, where the deviation from unity is
largely due to experimental noise.

We again underpin our observations by calculating the theoretical effi-
ciencies 7, using Eq. 7.2 and 7.3 with d = (p, + iPy) /V2. The calculations
(right panel of Fig. 7.6d) are in excellent agreement with the measurements,
as can also be seen from the line cuts (see Fig. 7.6e) taken at positions of
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7 Toward a scalable solid-state to photonic-qubits interface

maximal directionality. The maximum theoretical directional coupling ef-
ficiency (|n|%) for this PhCW is 0.95, meaning that a circular dipole has
the highest and most directional emission at the same locations. Further-
more, the excellent agreement between calculations and experiment allows
us to extend our coupling efficiency calculations near the center of the slab.
Fig. 7.6 illustrates that at the center height in the slab, where dipolar emit-
ters emit with near-unity efficiency to the PhCW [131], a strong helicity to
path coupling efficiency is possible. Specifically, at the center of the slab

we find a maximal || > 0.99.

7.6 Conclusions

In conclusion, we have shown through classical measurements that a PhCW
can be used to deterministically couple circular dipole helicity to pathway.
Experimentally, we observe a coupling efficiency of 0.8 + 0.1, with a theo-
retical limit of unity, which can be found in a relatively large region. Our
observations of high directional efficiency, combined with observations that
PhCWs can be used to almost perfectly extract radiation from QDs within
the slab [138, 131], demonstrate the two key requirements of a deterministic
spin to pathway interface. In fact, recent experiments have suggested that
such an interface may be viable for systems other than QDs such as, for
example, atoms [135, 139, 140]. Such an interface, be it for QDs, atoms,
or any other emitter, would allow for the entanglement of emitter spin to
photonic pathway [129], or could even be used to create quantum logic
gates [128, 129], an important step toward future on-chip quantum optics
applications.
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Controlling electric and magnetic circular
dipoles

In this chapter we explore the nanophotonic control over the
helicity-to-path coupling of both circular electric and circular
magnetic dipoles. Firstly, we study the wavelength dependence
of the emission of linear electric and magnetic dipoles. Then
we investigate how the helicity-to-path coupling strength of cir-
cular electric and magnetic dipoles varies with wavelength. We
demonstrate that the emission wavelength can be used to tune
the strength and position of efficient helicity to path coupling of
both dipole types. We show that the helicity of both dipole types
at all investigated wavelengths can be coupled to a propagation
direction. Finally, we present calculations that show that pho-
tonic crystal geometry can be tuned to achieve near-unity helic-
ity to path coupling for both electric and magnetic dipoles over
a 30 nm window.



8 Controlling electric and magnetic circular dipoles

8.1 Introduction

Over the last decades nanophotonic structures have been intensively used
to engineer the lifetimes and emission direction of nearby emitters. The
extend to which these effects take place is a delicate interplay between, on
the one hand, the properties of the nanophotonic structure’s optical states,
and, on the other hand, properties of the emitter, such as its position,
emission wavelength, dipole orientation and wavelength. Additionally, in
the previous chapter we identified the helicity of the emitter dipole as a
property that can completely direct the dipolar emission direction into a
PhCW. Importantly, it is the combination of all these properties and the
optical eigenstates that determines the total effect on an emitters emission
direction and lifetime.

In this context PhCWs have been intensively studied because their in-
tricately structured eigenstates enable an extraordinary and position de-
pendent control over the emission rates of nearby emitters [125, 48]. This
change of an emitter’s lifetime is proportional to the slow down of light in
PhCWs (see Eq. 7.2), which can depend strongly on the emission wave-
length because PhCWs are highly dispersive (see Sec. 1.3.3). Importantly,
associated with the slow down of light in a PhCW is a redistribution of
the modal field [39, 40]. Interestingly, because the vectorial modal fields
change with emission wavelength, the emission wavelength might also affect
the possibility of coupling dipole helicity to photon path.

Furthermore, so far we have studied the possibility of electric dipole
helicity to path coupling, additionally, the control over magnetic dipoles
has recently attracted considerable interest [92, 141]. This recent interest
in magnetic emitters, draws attention to the possibility of coupling the spin
of a magnetic emitter to a photonic path.

In this chapter, we study the effect of both the emission wavelength
and dipole nature on the coupling between dipole helicity and photon path.
Firstly we study the emission of linear electric and magnetic dipolar emit-
ters at wavelengths corresponding to a tuning of the group index by an
order of magnitude. Then, we turn to circular dipoles and we investigate
the effect of dipole nature and wavelength on the helicity to path coupling
of electric and magnetic circular dipoles.
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Figure 8.1: Calculated group index of the PhCW. Calculated relation be-
tween group index and wavelength. Black dots indicate the wavelengths at
which we measure.

8.2 Calculated linear electric and magnetic dipole emission

In Fig. 8.1 we show the calculated dispersion relation of our PhCW, which
is the same as in the previous chapter. In this dispersion relation we can
identify three regimes, the fast light, the slow light, and the very slow light.
In this chapter, we investigate the emission of dipolar emitters in each of
these regimes. That is, we will investigate the emission of electric and
magnetic dipoles at 1575, 1585 and 1592 nm, corresponding to an n, of
15, 40 and 120 respectively. The calculated F' maps at these wavelengths
for z- and y- oriented electric dipoles (see Fig. 8.2a) show that the max-
imum enhancement factor changes from 1.6 at 1575 nm (n, = 15) to 9.5
at 1592 nm (ny = 120). Furthermore, with increasing n, high enhanced
emission factors become available away from the center of the waveguide
at y = 0 (dashed blue lines, Fig. 8.2). This is expected since the PhCW
modes typically spread out as the light slows down [40, 39].

From our expression of the emission enhancement for an electric dipole
we can find the expression for the emission enhancement of a magnetic
dipole. Specifically, to find the emission rate enhancement factor for a
magnetic dipole we perform the substitution suggested in [8] and in Eq. 7.2
we replace [E, H, uou, ege, p] with [H, —E, ege, uop, pm]. Consequently, we
find that for a magnetic dipole

3rctang (w)
2w?
where the dot product effectively selects the magnetic fields of the mode

that the dipole couples to.

Fr.r (i, r,w) = th* - ep g (r,w)|*, (8.1)
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Figure 8.2: Calculated emission enhancement of linear electric and
magnetic dipoles. a Emission enhancement factor for y- (top row of pan-
els) and x-oriented (bottom row) electric dipoles 20 nm above the PhCW
slab for three emission wavelengths. b Emission enhancement factor for z-
(top row of panels) and y-oriented (bottom row) magnetic dipoles 20 nm
above the PhCW slab for three emission wavelengths. The factors in the
bottom left of each panel scale the panels maximal to 1. Blue dashed line
indicate the -plane of mirror symmetry of the crystal, blue circles indicate
the PhCW holes. Blue labels 1-4 in a and b correspond to the positions
labeled in Fig. 8.3.



8.3 Measured linear electric and magnetic dipole emission

Interestingly, for both polarizations and at all wavelengths, the emission
enhancement of magnetic dipoles is roughly a factor 6 larger than for electric
dipoles. Notably, in parallel to the similarity of the calculated electric
and magnetic modal fields 20 nm above the waveguide (see chapter 4),
the pattern of the calculated emission enhancement factor for a magnetic
dipole (see Fig. 8.2b) is close to that for an electric dipole (see Fig. 8.2a)
20 nm above the waveguide, although at all wavelengths small differences
are present. Combined the calculations shown in Fig. 8.2a and b highlight
the tunability of linear electric and magnetic dipolar emitters offered by
PhCWs.

8.3 Measured linear electric and magnetic dipole emission

To experimentally measure the emission of both electric and magnetic
dipoles, we use the setup employed in chapter 7 and tune the continuous
wave laser emission to 1575, 1585 and 1592 nm. Fig. 8.3a-f (left column)
show the emission maps generated with z- and y-polarized illumination.
Compared to the theoretical maps for a p, and m, (see Fig. 8.2), the maps
measured with z-polarized illumination show slight differences. Specifically,
we find that compared to the calculated maps, at 1575 nm the profile of the
emission map between maxima is differently shaped (see Fig. 8.3a, b, arrow
1), at 1585 nm (see Fig. 8.3c, d, arrows 2 and 3) there is more intensity
to the side of the waveguide and at 1592 nm (see Fig. 8.3e, f, arrow 4) we
again observe a slight suppression of the emission at the waveguide center.
Furthermore, a close examination of these figures reveals that at all wave-
lengths a slight left-right asymmetry is present® (for example arrows 1,3
indicate positions of high asymmetry). Interestingly, an asymmetry in the
emission direction of linear dipoles, was recently reported for the combined
emission of linear electric and magnetic dipoles and this asymmetry was
also used to quantify the relative strength of these dipoles [23, 142, 143].
Hence, our observation of directional emission of a linear dipole (in con-
junction with the work presented in chapters 4 and 5) suggests that we
could use the emission maps measured with linear dipoles to quantify the
relative electric and magnetic dipole strength of our probe.

*We stress that the directional emission of these linear dipoles is completely unrelated
to the helicity of the emitting dipoles, which do not have a defined helicity because they
are linear. Hence, this directional emission cannot be coupled to helicity.
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Figure 8.3: Measured linear electric and magnetic dipole emission. a,
¢, e (b, d, f) show the calculated and measured leftwards (rightwards) emis-
sion. In a-f, the top (bottom) row shows z- (y-) polarized emission. The
left (middle) column of panels shows the measured (calculated) emission
maps and the right column of panels shows line cuts taken along the gray
dashed line. In the line traces, the blue (gray) line shows the experimen-
tal (calculated) intensity. Blue labels in a, ¢, e show positions where the
calculated emission of a combined electric magnetic emitter particularly
improves agreement with measurements. Black arrows indicate emission
polarization. Blue circles indicate the holes in the PhCW.



8.3 Measured linear electric and magnetic dipole emission

To quantify the contribution of both electric and magnetic dipolar emis-
sion, we approximate our aperture probe as a combined electric [57] and
magnetic [94] dipole source. Additionally, compared to chapter 4, we now
measure closer to the surface of the crystal, where higher wavevectors are
more abundant (see chapter 1). Because our probe cannot couple to some
of these wavevectors, we now also need to take the finite resolution of our
tip into account. Although we could invoke the optical reciprocity theo-
rem to predict our measurements (see chapter 5), this would not provide
extra experimental insight and the spatially different profiles of the electric
and magnetic reciprocal fields make assigning a single strength to electric
and magnetic dipole emission non-trivial. Hence, we fit our experimen-
tal measurements with a superposition of the electric and magnetic modal
fields that we convoluted with a (210 nm diameter) disk. Specifically, we
approximate the measured signal with

FL R (Pe, my; T,w) = |aB" (r,w) — BZoH™" (r,w)‘Q, (8.2a)

FL,R (py7 my; I',CL)) = ‘aEgon (I‘,LU) + 5Z0Hgon (I‘,(,U)‘Q ) (82b)

where Zp is the impedance of free space, EZ%' (r,w) and Hy9" (r,w) are the
convoluted electric and magnetic modal field components and « and 5 are
complex fitting parameters that quantify the relative electric and magnetic
coupling strengths. As sketched in Fig. 8.4, rotating the injection polari-
zation causes a sign change between the in-plane electric and magnetic
fields. Therefore, Eqgs. 8.2a and b differ by a minus sign that ensures a con-
sistent phase between the electric and magnetic coupling for both injection
polarizations.

The fits that are obtained using Egs. 8.2a and b (middle panels of
Fig. 8.3a-f) show good agreement with the measured fields when | Zp3| / |a| =
0.9 and ¢g — ¢, = —0.37 rad. This agreement is emphasized by the line
traces shown in the right panels of Fig. 8.3a-f. Nonetheless, the emis-
sion along the waveguide center at 1592 nm remains somewhat suppressed
compared to the calculations and at 1585 nm we observe slightly lower
emission efficiency to the side of the waveguide. These differences could be
explained by the increased interaction between the probe and the sample
at these higher ng’s.
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Figure 8.4: Rotating the illumination polarization. (left) Coordinate sys-
tem. (middle, right) Blue (pink) lines show the field orientation for z- (y-)
polarized illumination, respectively. Rotating the illumination polarization
-90 degrees changes E, to I, (middle) and H, to H,, (right).

8.4 Circular electric and magnetic dipole emission

We investigate the tunability of electric and magnetic dipole helicity-to-
path coupling in PhCWs by injecting circularly polarized light at 1575,
1585 and 1592 nm. In appendix A we give an explanation of how we
ensure circularly polarized illumination. The emission maps with circu-
larly polarized light at all wavelengths (1575, 1585 and 1592 nm, shown
in Fig. 8.5) reveal a clear left-right asymmetry in the emission direction.
Furthermore, for all wavelengths, flipping either the direction of the de-
tector path (i.e. monitoring either Dy or Dpg) or dipole helicity results
in a mirroring of the emission enhancement map about the middle of the
waveguide (y = 0, dashed blue lines in Fig. 8.5). This asymmetry, which
is indicative of helicity-to-path coupling, is excellently reproduced by the
calculations for circularly polarized emission with a combined electric and
magnetic emitter.

The helicity dependence of the emission directionality is further high-
lighted by line traces across the waveguide (taken along brown and pink
dashed lines in the emission maps, and shown by blue and green lines in
the right two panels of Fig. 8.5). These line traces, which are in excellent
agreement with the calculations for all group indices, show that maxima
for one helicity are turned into minima with a helicity reversal. Addition-
ally, these line traces highlight that the positions at which we observe the
left-right asymmetry shift between the shortest and the longest wavelength
(from the brown to the pink dashed line in Fig. 8.5).
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Figure 8.5: Circular dipole emission into the PhCW. Experimental (Dg
and Dp)and calculated (F;, and F'r) emission maps for circularly polarized
emission at 1575 nm (a), 1585 nm (b) and 1592 nm (c). The right two fig-
ure columns show line traces through the calculated and measured maps,
along the dashed pink (right figures with line traces) and yellow (left fig-
ures with line traces) lines. Blue (green) lines show cuts through Dy, (DRg).
Light (dark) gray lines show cuts through Ff, (Fr). Black arrows indicate
the circular dipole handedness. 103



8 Controlling electric and magnetic circular dipoles

8.5 Control over helicity-to-path coupling offered by emission wave-
length

8.5.1 Coupling strength

To quantify the coupling strength between helicity and path we compute the
emission directionality for all wavelengths and positions above the wave-
guide via Eq. 7.3. In Fig. 8.6a, b, ¢ we present the experimental maps
obtained via Eq. 7.3 for wavelengths of 1575, 1585 and 1592 nm. These
maps reveal that for all wavelengths large areas of high |ng;,| are avail-
able. Furthermore, the observed coupling strengths closely match to the
maps calculated for the combined electric and magnetic dipole emission
(not shown). The line traces across the waveguide (right two columns of
panels, Fig. 8.6a, b, ¢) both confirm this excellent agreement between ex-
periment and theory and highlight the size of the areas where |n| > 0.8
(gray regions in line traces, Fig. 8.6a, b, c).

To gain more insight in the separate dipole emission that gives rise
to the maps in Fig. 8.6a, b, ¢, we show contours where |ng,| > 0.8 for
the emission from purely electric and magnetic dipoles in Fig. 8.6g, h,
i. These figures reveal large areas of strong helicity-to-path coupling at all
wavelengths that are very similar between the electric and magnetic dipoles.
Notably, we observe that for increasing ny these areas of highly directional
emission move away from the waveguide center to the extend that they
nearly disappear at the waveguide center. Importantly, large regions with
close to unity values of |ng;| that we find at all wavelengths (Fig. 8.6g,
h, i) highlight that emitter spin and photon path can be deterministically
coupled on a PhCW waveguide for different wavelengths and mode profiles.

8.5.2 Coupling efficiency

For our approach to dipole helicity to pathway coupling to be a viable route
toward on-chip quantum technology, not only the directionality but also the
emission rate itself needs to be maximized. Hence, analogue to chapter 7 for
1575 nm emission, we now extract n for emission at 1575, 1585 and 1592 nm
according to Eq. 7.4. Strikingly, in the measurements (shown the left panel
of Fig. 8.6d, e, f) at these higher ny’s, regions of highly directional coupling
appear away from the center of the waveguide [see Fig. 8.6e (ny, = 40) and
Fig. 8.6f (ny = 120)]. Furthermore, as can be observed from the line cuts
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Figure 8.6: Emission directionality. a, b, c (d, e, f) Experimentally deter-
mined n4;, (n) maps (left panels), and line traces (middle and right panel)
along the red and green lines in the left panel. g, h, i Contours indicate re-
gions where |n| > 0.8 (orange) and |n4;,-| > 0.8 (green) for the emission of
a purely electric (left panel) and magnetic (right panel) dipole. In a-f black
circles show contours of the holes in the PhCW.
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8 Controlling electric and magnetic circular dipoles

(shown the right panel of Fig. 8.6d, e, f) as n, increases, the position of
[7|maz shifts from the central region of the waveguide, to the area of the
holes (from the green to the red dashed line). These observations are in
excellent agreement with the line traces shown in that figure. Furthermore,
[Nlmax decreases as ng increases, from 0.8 & 0.1 at 1575 nm, to 0.6 £ 0.1
at 1585 nm, and 0.7 £ 0.1 at 1592 nm. The directional coupling efficiency
decreases due of the combined emission of electric and magnetic dipoles,
which are projected onto (slightly) different modal fields (see chapter 6).
Furthermore, for the higher ny’s the maxima in directionality and circular
dipole emission enhancement are no longer located at the same position.

To gain more insight in the possibility of spin-to-path coupling of purely
electric and magnetic dipoles we show the regions where |n| > 0.8 for purely
electric and magnetic emitters in Fig. 8.6g, h, i. We observe that the
area enclosed by these regions decreases as a function of mg. That is,
in Fig. 8.6h regions of || > 0.8 are available for electric, but absent for
magnetic dipoles.

A comparison between the contours of |n| > 0.8 and |74;,.| 0.8 in Fig. 8.6g,
h, i reveals that at all wavelengths the contours of |74;.| enclose much larger
areas then those for |7|. Hence, although emission might not equal the max-
imal emission at higher ny, helicity and path are still strongly coupled.

8.6 Geometric control of coupling strength

To explore the possibility of achieving high |n(w)| and n, simultaneously,
we calculate the maximally available |n(w)| for a larger wavelength range
and investigate the effect of a slight change in the PhCW on |n(w)| maz-
We begin by computing [n(w)|,,.. for each calculated PhCW mode (red
lines, Fig. 8.7a, b). These calculations reveal that the PhCW offers near-
unity helicity-to-path coupling for both electric and magnetic dipoles at
wavelengths shorter than 1575 nm. Interestingly, at longer wavelengths
[1(w),,42 first drops, then recovers, before dropping near the PhCW mode-
gap [with the magnetic dipole (thin lines, Fig. 8.7b) dropping slightly faster
than the electric dipole (thick lines, Fig. 8.7b)]. This drop to zero for both
emitter types can be understood, because, at the mode gap, the PhCW
mode is a standing wave [33]. Due to the structural symmetry this stand-
ing wave is equally left- and rightwards propagating and hence cannot cou-
ple helicity to path. A precise investigation of how the maximal coupling
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Figure 8.7: Coupling efficiency as a function of wavelength. a Disper-
sion relation of the PhCW modes with the designed (blue line) and used
geometry (red line). b Coupling strength as a function of wavelength for
emission with an electric (thick lines) and with a magnetic (thin lines) for
the PhCW with the changed (blue lines) and with the experimental geome-
try (red lines).

strength and position evolve with wavelength remains interesting for future
studies.

To obtain an idea of the effect of the PhCW geometry on [n(w)],,qz
we calculate [n(w)l,,,, for a slightly different PhCW geometry. That is,
we repeat the calculations with a 220 nm thick slab (corresponding to a
20 nm increase in thickness) and 120 nm radius (a 10 nm increase) holes
(blue lines Fig. 8.7a, b), while keeping the positions of the holes fixed. For
this geometry we observe a shift of the band structure towards larger wave-
lengths (blue line, Fig. 8.7a). Consequently, we expect that this structure
enables higher |n(w)]|,,,, at longer wavelengths. Figure 8.7b shows that,
indeed, the tuned PhCW geometry allows for larger |n(w)l|,,,,, for both
electric and magnetic dipoles. Specifically, we find that the new geometry
enables near-unity helicity to path coupling for both electric and magnetic
dipoles over a 30 nm window.

8.7 Conclusions

In this chapter we have experimentally demonstrated that dipole helicity
and path can be coupled in a PhCW over a range of wavelengths, which
corresponds to a tenfold emission enhancement. Furthermore, we have
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8 Controlling electric and magnetic circular dipoles

shown that this tunability can be achieved for both electric and magnetic
dipoles. Because helicity of these dipoles is associated with the spin change
of quantum emitters, our work paves the way for a controlled coupling
of spin and path. This control is of vital importance for the practical
realization of a scalable solid-state to photonic-qubit interface.
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An on-chip sensor for circular dichroism

In this chapter we investigate the possibility of applying the un-
derstanding gained in this thesis for the development of a mag-
netic circular dichroism semsor. Specifically, we propose to use
the ellipticity of the near fields of a ridge waveguide to probe a
circularly dichroic compound. Furthermore, we suggest a Mach-
Zehnder like scheme in which this waveguide could be incorpo-
rated to increase the sensitivity to the circular dichroism. We
also highlight some of the opportunities and challenges in the ap-
plication of this approach for the development of circular dichro-
1M Sensors.

9.1 Introduction

Spectroscopic data of molecules is of huge importance for their identification
and it provides a useful test of the validity of proposed models for molec-
ular structure and bonding [144]. In the context of molecular structure
and bonding, magnetic circular dichroism (MCD) can be used to identify
weakly visible or overlapping energy bands, which are invisible to com-
mon absorption techniques that use linearly polarized light [145, 146, 147].
Techniques exploiting MCD are particularly useful in the investigation of
bioinorganic molecules that play a key role in biological redox processes
such as photosynthesis or respiration [145, 146, 147].
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9 An on-chip sensor for circular dichroism

In MCD molecules are subjected to a static magnetic field and probed
with circularly polarized light. Like the orbital angular momentum chang-
ing transitions discussed in chapter 7 and 8, a circular electric field can
excite transitions to specific spin states [148]. These transitions between
spin states occur at different wavelengths and the differential absorption at
a given wavelength is typically defined as

 Apr(N) - Ars()
AAN = 2 ) F Arn (V)

(9.1)

where Arp ru(A) are the absorptions for left- and righthanded circular
electric fields, respectively. In an ideal measurement, the optical field ori-
entation and intensity are controlled such that AA is maximal and AA is
resolved with maximal sensitivity.

At present, techniques that probe MCD use far-field radiation and re-
quire large experimental setups that can generate huge (up to 7 Tesla)
magnetic fields [148]. Furthermore, these detection schemes typically use
complex and expensive electronics and optics to measure the absorption for
both optical polarizations and subtract these. Conversely, an ideal setup for
the detection of MCD, would consist of a simple detection scheme, which
delivers high sensitivities.

We propose to use the circular evanescent field above a SigNy ridge
waveguide (sketched in Fig. 9.1a) to sensitively probe MCD of the molecules
in suspension above the waveguide. Over the last decades, there has been
a flurry of research in such nanophotonic waveguiding sensors, which can
greatly enhance the sensitivity to nearby molecules up to several picograms
per mm? [149, 150]. However, the possibility of using these waveguides to
probe circular dichroism has remained unexplored.

In MCD the static magnetic field is oriented perpendicular to the plane
in which the electric field is circular. For example, the ability of an electric
optical field to drive a (circular) electric transition dipole mediated transi-
tion in the presence of a static magnetic field along x (B,) is proportional
to [148]

Apmrir(N) < By |al,(A) -E[, (9.2)
where ay;(\) o< ¥ & iz depending on the helicity of the transition dipole.
The differential absorption of left- and righthanded electric fields is pro-

portional to ByRe{iE,E.} and is maximal for circular electric fields. Re-
cently, it was shown that completely circular electric fields can even be
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Figure 9.1: Nanophotonic ridge waveguide. a Sketch of the ridge wave-
guide geometry. The waveguide is 250 nm high and 100 nm wide. b Calcu-
lated |E|? distribution in and near the waveguide. Dashed blue line indi-
cate materials interfaces. ¢ Calculated normalized Re{iE, E. } in and near
the waveguide. Dashed gray lines indicate interfaces.

obtained in the evanescent field of the fundamental mode in tapered op-
tical fibers [139, 135]. In general, although for example the electric field
of a TE mode is completely linearly polarized on certain axes or planes of
structural symmetry, away from these axes or planes the field can elliptical
or even circular.

At 1550 nm (a typical wavelength for MCD studies [148]) our ridge
waveguide supports a single TM mode, with an effective wavelength of
kepr = 1.6kg. The geometry of the waveguide is chosen to be as symmet-
ric as possible. The bottom half of the SizNy; waveguide is surrounded
by Si0O2, which has roughly the same index as the aqueous solution that
surrounds the top half. As depicted by Fig. 9.1a, a significant fraction of
the light distribution is available in the water above this waveguide, al-
though the vast majority of the light is inside the waveguide. In addition
to sufficient optical amplitude, the sensitive detection of MCD requires a
non-zero ellipticity of the evanescent field that is oriented perpendicular to
the applied magnetic field along x. Strikingly, the calculation of Re{iE,E,}
presented in Fig. 9.1c reveals that only one helicity of the electric field is
present in the water. Furthermore, the helicity of this electric field is re-
versed with a change of propagation direction of the mode (see also chapter
7, calculations not shown). Hence, a difference in absorption of light propa-
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9 An on-chip sensor for circular dichroism

Figure 9.2: Proposed on-chip MCD detection scheme. Black lines indi-
cate the waveguide paths. In the blue shaded area the waveguide is cov-
ered with the suspension, which contains the investigated molecules. All
waveguide junctions are 50/50 beamsplitters, at the beamsplitter indicated
by the gray arrow, on the LH and RH indicate the right and left handed he-
licity of the fields above the waveguide. The heating element is indicated
in gold.

gating in opposite directions in the waveguide could be used as a probe for
MCD. We note that the waveguide geometry that we present can still be
optimized. Such an optimization would entail a maximization of the ratio
Re{iE,E,}/|E|* in the area above the waveguide.

In Fig. 9.2 we present a Mach-Zehnder like scheme in which the wave-
guides could be incorporated to enable the efficient detection of MCD. In
this scheme two detectors measure the interference between the light from
two equal length paths, which are both exposed to the investigated com-
pound. Through the Kramers-Kronig relations a differential absorption
between the two paths is related to a difference in the real part of the re-
fractive index [151]. Such a difference in refractive index causes a difference
in the phase pick up between the to paths, which changes the intensity of
the interference signal on the two detectors. Mathematically, the optical
intensity on the detectors is given by

IO\ =Irg(\) + Inp (V) +

9.3a
2VIRH(/\)ILH()\) COS((ZﬁLH()\) —¢RH(A)+7T+¢C), ( )
I°(N) =Irg + ILu+ (9.3b)

2/ Irg(MN)IpE(N) cos(dru(N) — dru(N) + ¢c),

where I rr () and ¢ rr () are the intensities and phase changes due
to the absorption of right and left handed light and ¢(C) is a voltage
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9.1 Introduction

controlled phase shift that can be added to one of the channels. Due to the
last beamsplitter (gray arrow, Fig. 9.2) one of the two inputs picks up an
additional 7 phase shift when it contributes to I” .

In this detection scheme the differential absorption between the LH
and RH channels is much smaller than their total absorption, hence I
describes a conventional absorption measurement. On the other hand I”
is zero when ¢rg = ¢rg, and no voltage is applied. Importantly, any
difference in absorption will result a non-zero I”, enabling a potentially
extremely sensitive detection of MCD.

Additionally, a measurement of MCD requires knowledge of which hand-
edness is absorbed most, and due to the symmetry of a cosine the helicity
cannot be resolved without an additional mechanism. To resolve this issue,
we propose to add a controlled phase difference (for example by means of
heating or free carrier injection) to one of the two channels. If the phase
of one of the input channels can be changed with a known sign, and if we
assume that the (¢ — ¢rp| < m, the increase or decrease of the signal in
IP due to an applied voltage will be linked to the helicity of the light that
is absorbed most. A precise estimation of the sensitivity gain offered by
the proposed detection scheme requires a further investigation. However,
we stress that even a bare nanophotonic waveguide can enhance the sen-
sitivity to molecular compounds [152], and that by the incorporating the
waveguide in a Mach-Zehnder interferometer this sensitivity can be further
enhanced by several orders of magnitude [149, 150, 153].

In conclusion, the proposed nanophotonic waveguide detection scheme
could improve the sensing of MCD on chip. In this manner this platform
could benefit researchers and companies aiming to resolve the structures of
the bioinorganic molecules. We note that for measurements over a broad
spectral range, SisN4 waveguides could also enable MCD measurements
in the visible part of the spectrum. We also note that it is important to
develop a future sensor such that both the modal field distribution and the
behavior of the beamsplitters are controlled throughout the spectral range.
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Control over emission polarization

One of the benefits of using a NSOM to mimic the emission of a dipo-
lar emitter is that this setup allows a high degree of the control over the
dipole orientation. Here, we use the A\/2, \/4 and LC wave plates shown
in Fig. 7.3c (main text) to control the field orientation beneath our NSOM
tip. The LC-plate (Thorlabs LCC1113-C) that has a voltage controllable
phase difference between its birefringent axes, is only used in experiments
where we mimic a circular dipole.

We start by orienting our half- and quarter-wave plates analogue to
the procedure used in collection mode to achieve linear (X) polarization
beneath the probe apex. In this situation (black dot on the Poincaré spare
sketched in Fig. A.1a), we know that before the \/4, the polarization of the
light is aligned with one of the birefringent axes of the combined /4 and
fiber system. Therefore, to measure the emission of a § oriented dipole,
we rotate the A\/2 by 45° to align our polarization to the other axis of the
combined system (moving along the green circle to VP, Fig. A.la).

We now set out to show that we can control the orientation of our
dipole source to create circularly (and elliptically) polarized dipoles. To
mimic a circularly polarized dipole we firstly create equal amplitude x- and
y-components of the probe dipole and subsequently ensure that they oscil-
late in quadrature. Equal amplitude in-plane dipoles are straightforwardly
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Figure A.1: Achieving circular dipole orientation. a Poincaré sphere,
with annotated orientations of the dipoles that emits into the PhCW. In-
tersections between the sphere and the gray axes are labeled with the
corresponding dipole orientations: linear polarized x, y (HPVP), linearly
diagonally polarized (+45,-45), and left- and righthanded circular polarized
(LCP,RCP). The green (and purple) line indicates the effect of rotating the
A/2 (and scanning the voltage on the LC) plate. b Relation between volt-
age from our liquid crystal controller (Vo) and the resulting phase (¢)
described in the text.

achieved by rotating the \/2 by 22.5° (move along gray dashed arrow to
the gray dot, Fig. A.la). However, at this point in the experiment the
birefringence of the combined fiber and A\/4 system is unknown. That is,
the position of dipole orientation on the purple circle drawn in Fig. A.la
is unknown at this at this point. Consequently, to achieve circular polari-
zation we need to scan the phase between the x and y oriented dipoles
to ensure circular polarization. To achieve circular dipole orientations, we
vary the phase between the equal amplitude x- and y-components of the
probe dipole using the LC-plate. Specifically, after we ensure that the bire-
fringent axes of this waveplate are aligned to the axes of the combined fiber
and system, we scan the phase difference between the two orthogonal com-
ponents of the probe dipole with the LC-plate. In this manner the dipole
orientation moves along the purple line on the Poincaré sphere sketched in
Fig. A.la.
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For each voltage (Vicc) that we apply to the LC-plate, we find the
phase difference (¢) between the horizontally (HP (r,w) = aE" (r,w) —
BZoH," (r,w)) and vertically polarized dipole injection (V P (r,w) = aE*" (r,w)+
BZoHS" (r,w)) by fitting superpositions

. 2
FE;}; (VLcc, r, w) = HPL,R (I', UJ) —+ ews(VLCC)VPLR (I‘, w) (Al)

to our experimental emission maps on the left and right detector at that
recorded at Ve, using the v and 8 that we found in Sec. 8.3. Fig. A.1b
shows that the obtained via this approach show excellent agreement be-
tween the three wavelengths (1575, 1585 and 1592 nm). Furthermore, we
find that we can sample an entire 2w phase difference. Having established
this calibration, our approach is straightforwardly extended to mimic any
complex dipole orientation. To measure the emission of circularly polarized
dipoles, we pick the values of ¢ closest to 7/2 and 37/2 for each wave-

length (move along blue and red dashed arrows to blue and red spheres in
Fig. A.1b).
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Summary

The control over light with matter plays an important role in many recent
technological advances that advance our daily lives. For example, nowa-
days optical fibers are intensively used to transport information across the
globe, the energy from solar panels helps satisfy an increasingly large frac-
tion of our energy consumption and efficient lighting with light-emitting
diodes is becoming increasingly popular. Nanophotonic structures, which
offer a sub-wavelength control over light and nearby emitters, promise dra-
matic advances in our ability to harvest light, process information and sense
compounds. In general, the optical field distributions near nanophotonic
structures are much more complex than those in the far field. That is, near
nanophotonic structures both the electromagnetic fields and the emission
modification of nearby emitters vary on the nanoscale with respect to their
orientation, amplitude and phase.

A deep understanding of the structure of these nanoscale vector fields
impacts a variety of applications. For example, on the one hand, knowledge
of the local vectorial electric field distribution can be used to control the spin
or orbit of particles at the nanoscale. On the other hand, circular transition
dipoles are associated with orbital angular momentum changing transitions
between spin states in quantum emitters, and a control over these transi-
tions impacts quantum information processing applications. Furthermore,
magnetic dipole emitters and materials that interact strongly with the mag-
netic field have recently attracted considerable interest. Combined these
examples illustrate the need for a nanoscale vectorial mapping of all six
components of the optical field (3 electric and 3 magnetic) and how these
fields affect nearby electric and magnetic dipolar emitters.

In contrast to the required mapping of 6 components, near-field scan-
ning optical microscopy, which is intensively used to measure nanoscale
optical fields, maximally measures two components of the optical field or
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two components of a dipole vector simultaneously. By placing a subwave-
length tip near a nanophotonic structure, this type of microscope converts
some of the evanescent fields near a nanophotonic structure to radiation
that can be detected. By scanning this tip near a structure the optical
fields and the emission modification of dipolar emitters can be mapped.
The apex of a conventional tip consists of an aperture formed by optical
fiber (typically between 80 and 250 nm diameter) coated with 200 nm of
aluminum, through which light is either injected into, or collected from,
a nanophotonic structure. An understanding of the interaction of this tip
with optical fields is crucial, because the ability to map optical fields with
a NSOM vitally depends on the possibility of relating the measured signal
to optical field components.

In this thesis, we studied the light-matter interactions concerning this
tip and we extended the number of simultaneously detected vector com-
ponents to five. Furthermore, these measurements led to insights into the
nanophotonic control over vectorial electric and magnetic dipoles and into
the intricate structure of both the electric and magnetic optical fields.

In chapter 3, we exploited the symmetry of the optical fields above a pro-
totypical optical waveguide to unravel the signal measured with a NSOM.
Firstly, we measured with a conventional probe and used this symmetry to
filter out experimental noise. Then, we measured with a modified tip and
showed that the mirror symmetry can be used to separate the signal from
the out-of-plane magnetic field, increasing the number of maximally simul-
taneously detected components by in essence opening up a new channel.

Interestingly, although the conventional probe was commonly accepted
to detect the local in-plane electric field (E”), recently it was reported to
be sensitive to the in-plane magnetic field (Hj) instead. In chapter 4,
we ended this controversy by measuring on a photonic crystal waveguide
(PhCW). These waveguides have the property that the spatial distribution
of the electric and magnetic fields evolves differently with increasing dis-
tance away from the structure. By performing near-field measurements in
planes of increasing distance to the PhCW, we demonstrated that a conven-
tional coated fiber probe detects both E| and H. In fact, we showed that
probes with diameters ranging from 130 to 350 nm simultaneously detect
the electric and the magnetic nanoscale optical fields with approximately
the same sensitivity.

In chapter 5, we supported this observation with calculations of the
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aperture probe sensitivity to E; and Hj. We used the optical reciprocity
theorem to simplify these calculations and provide insight in the process of
image formation by a near-field microscope. As an outlook, we presented
a method, based on the optical reciprocity theorem, that could be used
to separate the in-plane electric and magnetic fields near a nanophotonic
structure, from the signals obtained with a conventional probe.

In chapter 6, we used our ability to simultaneously map E; and H to
identify phase- and polarization-singularities in these fields. These singu-
larities have recently attracted considerable interest, because a particle
placed on these singularities will start to orbit (on a phase singularity)
or spin (polarization singularity). Our ability to simultaneously measure
optical electric and magnetic fields allowed us to track how these singu-
larities in both the electric and magnetic fields evolve with height above
the PhCW.

In chapter 7, we injected light through the tip of a conventional aperture
probe, instead of collecting light through it. We demonstrated that this
approach can be used to mimic the emission of arbitrarily oriented in-plane
dipole. We used this method to study the emission control of circular
dipoles provided by the near-field structure of the optical modes of a PhCW.
Firstly, we showed that our near-field microscope can be used to mimic the
emission of arbitrarily oriented dipolar emitters. Then, we studied the
emission of circular dipoles of opposite helicity, ultimately showing that
each helicity of circular dipoles can be coupled to a single photonic pathway
in a PhCW.

This observation intimately linked to a possible nanophotonic interface
between emitter spin and photonic pathway, because the helicity of circu-
lar dipoles in associated with the transitions between specific spin states in
quantum emitters. In chapter 8 we further investigated the possible real-
ization of such a spin-to-path interface. We demonstrated that the optical
wavelength can be used to tune the position of efficient spin-to-path cou-
pling and we showed that the spin of both electric an magnetic emitters
can be coupled to an optical path.

Lastly, in chapter 9 we presented an idea for the valorization of our
understanding of the vectorial structure in optical near fields. We suggested
how the TM mode of a standard ridge waveguide could be used to sense
magnetic circular dichroism efficiently.
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Samenvatting voor allen

Het naar onze hand kunnen zetten van licht speelt een belangrijke rol in
ons dagelijks leven. Optische fibers die licht rond de wereld geleiden, vor-
men de ruggengraat van het internet, de energie die opgewekt wordt met
zonnepanelen maakt een steeds groter deel uit van onze energieconsumptie
en efficiénte LED verlichting wordt steeds vaker gebruikt. De mate waarin
de mogelijkheden van licht benut kunnen worden, in deze en een scala aan
andere toepassingen, hangt af van de mate van berheersing over het gedrag
van licht.

Structuren die elementen bevatten met afmetingen tussen de 1 en de
1000 nanometer (afgekort nm, gelijk aan ongeveer 0.00002 tot 0.02 haardik-
tes) maken het mogelijk om licht op een unieke manier naar onze hand te
zetten. De afgelopen twee decennia is veel onderzoek gedaan naar dit soort
optische nanostructuren, omdat deze buitengewone beheersing van licht
talloze nieuwe technologische mogelijkheden opent. Niet alleen horen bij-
voorbeeld efficiéntere verlichting en zonnepanelen tot deze mogelijkheden,
maar ook nieuwe toepassingen van licht in compacte sensors of (kwantum)
communicatie zouden kunnen worden gerealiseerd. Een maximale benut-
ting van deze mogelijkheden van optische nanostructuren vereist een goed
begrip van het samenspel tussen licht en deze structuren.

Hoewel de vergelijkingen die het samenspel tussen licht en materie be-
schrijven al in 1865 door J. C. Maxwell zijn opgesteld, worden er nog steeds
nieuwe inzichten verkregen in het samenspel tussen licht en materie. Max-
wells vergelijkingen beschrijven licht als een elektromagnetische golf. Deze
golf bestaat uit zeer snel oscillerende elektrische en magnetische velden. In
de toepassingen in ons dagelijks leven kan de bijdrage van het magnetische
veld over het algemeen worden genegeerd. Echter, in de interactie tussen
licht en nanostructuren blijkt het magnetische veld juist steeds vaker een
grote rol te spelen. Daarom vereist een begrip van licht en materie in deze
structuren kennis van zowel het elektrische als het magnetische veld. De
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Figuur 1: Elektronmicroscoop opnamen van een fotonisch kristal en
een nabije veld probe. a Elektronenmicroscoop opname van een naald
van onze nabije veld microscoop. Het naaldje heeft een kern van glas
en die is bedekt met een laag aluminium. b Elektronenmicroscoop op-
name van een fotonisch kristal. In lichtgrijs is de (220 nm) dunne plak
silicium zichtbaar waarin een hexagonaal patroon van luchtgaten (donker-
grijs, straal 120 nm) aangebracht is. Licht wordt geleid door het kanaal in
het silicium waarin geen gaten zijn geboord.

ruimtelijke verdeling van deze velden, in en vlakbij nanostructuren, varieért
niet alleen in sterkte, maar ook in richting, en een begrip van de interactie
tussen licht en materie vereist kennis van beide.

Dit proefschrift presenteert een methode om de richting en sterkte van
elektrische en magnetische optische velden bij nanostructuren te visualise-
ren. Vervolgens, kunnen wij, dankzij de visualisatie van deze velden, nieuwe
eigenschappen van de velden bij nanostructuren identificeren. Tot slot to-
nen wij aan dat deze eigenschappen op hun beurt gebruikt kunnen worden
voor de controle over de emissie van lokale lichtbronnen.

Om het gedrag van licht in nanostructuren te visualiseren gebruiken wij
een ‘nabije veld microscoop’ (afgekort NSOM). Het belangrijkste onderdeel
van deze microscoop is een heel dunne naald van optische fiber (200 nm
in diameter) met daar omheen een dun laagje aluminium (figuur la). Een
klein deel van het licht in de nanostructuur onder de opening van de naald
wordt door de fiber naar een detector geleid. Door deze naald in een vlak
boven een structuur te bewegen, kan een beeld worden gevormd van de
lichtverdeling boven de structuur.

Tot voor kort werd aangenomen dat een standaard NSOM naald (fi-
guur 1a) slechts het elektrische veld waarneemt. Recentelijk ontstond daar
echter een controverse over toen werd gesuggereerd dat deze naald juist
het magnetische veld waarneemt. Wij maken een einde aan deze onduide-
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Figuur 2: Berekende en gemeten elektrische en magnetische velden
380 nm boven een fotonisch kristal. Van links naar rechts: Berekende
verdeling van het magnetische in de richting van y, H,, daarnaast de ver-
deling van het elektrische veld langs x, F,, daarnaast een meting (380 nm)
boven het fotonische kristal, en tot slot een combinatie (superpositie) van
de berekeningen E, en H,, o en (3 geven de relatieve bijdrage van beide
velden aan.

lijkheid door de lichtverdeling boven een fotonisch kristal te meten. Ons
fotonische kristal betaat uit een rangschikking van luchtgaten in een dunne
silicium plak (zie figuur 1b). Fotonische kristallen hebben de bijzondere ei-
genschap dat de ruimtelijke verdeling van de elektrische en magnetische vel-
den verschillend evolueert met de afstand van het kristal (zie bijvoorbeeld
linker twee panelen in figuur 2). Door vlakken op verschillende afstanden
te scannen kunnen wij de bijdragen van het elektrische en het magnetische
veld identificeren (zie de rechter twee panelen van figuur 2).

Wij ondersteunen deze observatie met berekeningen die inzicht verschaf-
fen in hoe de beeldvorming met een NSOM tot stand komt. Wij tonen aan
dat het mogelijk is om het patroon van het gemeten signaal en de gevoelig-
heid voor de elektrische en magnetische velden te voorspellen. Bovendien
suggereren wij een nieuwe aanpak, waarmee in de toekomst de elektrische
en magnetische velden zouden kunnen worden gescheiden in het signaal van
een NSOM.

De mogelijkheid om de elektrische en magnetische velden bij een fo-
tonisch kristal te meten stelt ons in staat te onderzoeken of deze velden
punten bevatten waar een eigenschap van de velden onbepaald is. Der-
gelijke punten worden in de literatuur ‘optische singulariteiten’ genoemd.
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Een voorbeeld van een optische singulariteit is een punt waar de richting
het elektrische of magnetische veld onbepaald is. Op een dergelijk punt
tollen de optische velden in de rondte, en daarom kan de richting waarin de
velden wijzen daar niet worden bepaald. Als eerst tonen wij aan dat zowel
de elektrische als de magnetische optische velden boven een fotonisch kris-
tal optische singulariteiten bevatten, en bepalen wij de draairichting van
deze singulariteiten. Daarna volgen wij de positie van deze singulariteiten
in drie dimensies boven het fotonische kristal.

Het begrip dat wij op deze manier verkrijgen over de optische velden
bij een fotonisch kristal, verschaft ook nieuwe inzichten in de straling van
(kwantum) lichtbronnen in de buurt van het kristal (figuur 3a). In de
context van ons eerdere werk zijn wij met name geinteresseerd in een speci-
fiek type kwantum bronnen, namelijk bronnen die ‘tollend’ licht uitzenden
met een tolrichting die door hun grondtoestand wordt bepaald (figuur 3b).
Wij bootsen dit tollende licht uitgezonden door de kwantum lichtbron na
door uit de naald van onze nabije veld microscoop licht in het kristal te
injecteren. Wij tonen aan dat als de naald op een optische (‘richtings’)
singulariteit boven het fotonische kristal is geplaatst, de tolrichting van het
licht dat de naald uitzendt bepaalt in welke richting in het kristal het licht
wordt uitgezonden (figuur 3c, d).

Dit resultaat toont aan dat als het experiment met een echte kwantum
bron (zoals geschetst in figuur 3b) zou worden gedaan, de grondtoestand
van deze bron de richting van het licht dat de bron uitzendt in het kristal zou
kunnen bepalen. In die situatie zou een nieuw platform voor de koppeling
tussen de informatie in de grondtoestand van een lichtbron en de richting
van het uitgezonden licht zijn gevormd, en daarmee zou ons onderzoek in
de toekomst efficiéntere kwantum communicatie mogelijk kunnen maken.
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Figuur 3: Tolrichting aan emissie richting koppeling in een fotonisch
kristal. a Een schematische weergave van een kwantum lichtbron (bij-
voorbeeld een atoom) die een foton uitzendt. De elektronen in de kwan-
tumbron bewegen in verschillende banen (zwart) om de kern (rood). Als
een elektron (blauw) naar een baan dichter rond de kern vervalt, zendt
de kwantumbron een pakketje licht in de vorm van een foton uit. b Som-
mige kwantumbronnen kunnen vervallen naar toestanden met een ver-
schillende 'spin’ (rode pijlen). Het verval naar dit soort verschillende toe-
standen, gaat gepaard met de emissie van 'tollende’ fotonen. De tolrichting
van die fotonen (zwarte pijlen in het middelste niveau) is bepaald door de
toestand van de kwantumbron. ¢ Door tollend licht uit de naald van onze
nabije veld microscoop (zie figuur 1a) te injecteren, bootsen wij een lo-
kale lichtbron, bijvoorbeeld een kwantumbron, na. Wij plaatsen de naald
(oranje stip) nabij een fotonisch kristal (grijs) en meten of de tolrichting
van het geinjecteerde licht (pijlen bij rode en blauwe cirkels) de richting
waarin het licht in het kristal wordt uitgezonden bepaalt (rode en blauwe
pijlen). d Mate waarin de tolrichting de richting van het licht in het kristal
bepaalt, voor verschillende posities in een vlak boven het kristal. Als de tol-
richting van het geinjecteerde licht de richting waarin het licht in het kristal
wordt uitgezonden met volledige zekerheid bepaalt, is n gelijk aan 1. Of
7 positief of negatief is hangt af van de combinatie van tolrichting en de
propagatie richting van het licht in het kristal.
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