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Abstract 

Hypoxic areas are a common feature of rapidly growing malignant tumors and their metastases, and are 

typically spatially heterogeneous.  Hypoxia has a strong impact on tumor cell biology and contributes to tumor 

progression in multiple ways.  To date, only a few molecular key players in tumor hypoxia, such as for example 

hypoxia-inducible factor-1 (HIF-1), have been discovered.  The distribution of biomolecules is frequently 

heterogeneous in the tumor volume, and may be driven by hypoxia and HIF-1α.  Understanding the spatially 

heterogeneous hypoxic response of tumors is critical.  Mass spectrometric imaging (MSI) provides a unique 

way of imaging biomolecular distributions in tissue sections with high spectral and spatial resolution.  In this 

paper, breast tumor xenografts grown from MDA-MB-231-HRE-tdTomato cells, with a red fluorescent 

tdTomato protein construct under the control of a hypoxia response element (HRE)-containing promoter driven 

by HIF-1α, were used to detect the spatial distribution of hypoxic regions.  We elucidated the 3D spatial 

relationship between hypoxic regions and the localization of lipids and proteins by using principal component 

analysis – linear discriminant analysis (PCA-LDA) on 3D rendered MSI volume data from MDA-MB-231-

HRE-tdTomato breast tumor xenografts.  In this study we identified hypoxia-regulated proteins active in several 

distinct pathways such as glucose metabolism, regulation of actin cytoskeleton, protein folding, 

translation/ribosome, splicesome, the PI3K-Akt signaling pathway, hemoglobin chaperone, protein processing 

in endoplasmic reticulum, detoxification of reactive oxygen species, aurora B signaling/apoptotic execution 

phase, the RAS signaling pathway, the FAS signaling pathway/caspase cascade in apoptosis and telomere stress 

induced senescence.  In parallel we also identified co-localization of hypoxic regions and various lipid species 

such as PC(16:0/18:0), PC(16:0/18:1), PC(16:0/18:2), PC(16:1/18:4), PC(18:0/18:1), PC(18:1/18:1) among 

others.  Our findings shed light on the biomolecular composition of hypoxic tumor regions, which may be 

responsible for a given tumor’s resistance to radiation or chemotherapy. 
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Introduction 

Hypoxia is a hallmark of cancer and triggers multiple signaling cascades that significantly impact upon tumor 

angiogenesis, increased invasion and metastasis, selection for resistance to apoptosis as well as radiation and 

chemotherapy 1-3.  Hypoxia-inducible factor-1 (HIF-1) pathway is one of the best-characterized signaling 

pathways regulated by hypoxia in cancer 4,5.  HIF-1α, which is overexpressed in breast cancer, highly impacts 

upon tumor progression by enhancing the transcription of target genes, such as for example P53 4,6, vascular 

endothelial growth factor (VEGF) 7, and lysyl oxidase 8 through binding to cis-acting hypoxia response 

elements (HRE) containing the consensus binding site 5’-RCGTG-3’ in the promoters of these genes.  HIF-2α is 

also regulated by hypoxia and binds with HIF-1β to form the HIF-2 heterodimer.  While HIF-1α and HIF-2α 

share a high degree of sequence similarity, HIF-2 stimulates some, but not all of the genes activated by HIF-1, 

such as chemokine receptor type 4 (CXCR4) 9, Ephrin-A1 10, and transmembrane glycoprotein CD44 11, among 

others.  We have previously utilized MDA-MB-231-HRE-tdTomato breast cancer cells, which stably express 

tdTomato red fluorescent protein under the control of an HRE-containing promoter to detect the spatial 

distribution of hypoxic regions within the tumor 11.  These hypoxic regions arise from inadequate oxygen 

supply due to spatially heterogeneous variations in vascular volume, vascular permeability, and microvessel 

density across the tumor volume 1,12.   

HIF-1α expression alone cannot be viewed as a definitive marker of tumor response to hypoxia, and recent 

studies have focused on determining other gene and protein signatures involved in this complex phenomenon.  

Chi et al. 13 used human cDNA microarrays containing 42,000 elements that represent 27,291 unique genes and 

detected 253 genes that are up-regulated under hypoxia in human mammary epithelial cells and renal proximal 

tubule epithelial cells in vitro.  Buffa et al. 14 showed that genes involved in angiogenesis such as vascular 

endothelial growth factor A (VEGFA), glucose metabolism such as glucose transporter type 1 (GTR1), 

phosphoglycerate mutase 1 (PGAM1), enolase I (ENOA), L-lactate dehydrogenase A (LDHA), triosephosphate 

isomerase II (TPIS2), and fructose-bisphosphate aldolase A (ALDOA), and cell cycle regulation such as cyclin-

dependent kinase inhibitor 3 (CDKN3) were among those that were likely over-expressed in hypoxic breast 

cancers.  Using proteomics tools, Cui et al. 15 identified hypoxia-regulated proteins that were overexpressed in 

micro-dissected pancreatic cancer nests.  Immunohistochemistry (IHC) confirmed that these pancreatic cancer 

nests had significantly higher expression levels of glucose-regulated protein 78 (GRP78), macrophage 

migration inhibitory factor (MIF), and annexin A5 (ANXA5) than normal pancreatic tissues, suggesting these 

hypoxia-regulated proteins as promising targets for pancreatic cancer diagnosis and therapy 15. 

Tumor hypoxia is typically spatially heterogeneous making it challenging to assess the spatial distribution of 

co-localizing biomolecules and investigate hypoxia-regulated pathways in solid tumors.  We have previously 
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performed a comprehensive analysis of the combined in vivo 1H MRSI and ex vivo optical imaging data 

obtained from the MDA-MB-231-HRE-tdTomato breast tumor model, and showed a higher concentration of 

noninvasively detected tCho and mobile lipid droplets that co-localized with the tdTomato-fluorescing hypoxic 

regions, which indicated that hypoxia can upregulate tCho and lipid CH3 levels in this breast tumor model 16-18.   

Mass spectrometric imaging (MSI) enables the characterization and profiling of a plethora of molecules, and at 

the same time reveals their individual spatial localizations in cancer tissue sections, without the need for 

labeling of these molecules 19.  Hence, MSI provides a unique way to make snapshots of molecular distributions 

in a high-throughput manner with high spectral and spatial resolution 20.  We have recently identified 

characteristic tryptic peptides from the red fluorescent tdTomato protein by combining microscopic 

fluorescence imaging with matrix-assisted laser desorption ionization (MALDI)-MSI using a novel fiducial 

marker system 21, making it possible to detect tdTomato by MALDI-MSI.  We have spatially localized a 

number of lipid species in two dimensions in this breast tumor xenograft model 22.  It is now possible to perform 

3D reconstruction and rendering of MSI tissue volumes by using block-face optical imaging methods 23 or 

fiducial marker strategies 24 to accurately align successive 2D MSI experiments of tissue sections that are cut 

with well-defined spacing throughout a biological sample, such as a tumor or an organ.  3D reconstruction and 

rendering of MSI data is useful for visualizing the characteristics of a tissue volume in 3D, and it also enables 

quantitative mining of 3D MSI volume data, for example, for quantifying correlations between spectral and 

spatial features, by using multivariate statistical analysis approaches 25,26.   

Differences in phospholipid signals between renal cell carcinoma and adjacent normal tissue have been studied 

in 2D using multivariate analysis on desorption electrospray ionization (DESI)-MSI data with a 

misclassification rate of about 14% 27.  DESI lipid imaging was able to show a high recognition rate of 97% 

with cross validation for classifying subtype, grade, and concentration features of human brain tumors 28.  MSI 

of biopsies from human colorectal cancer liver metastases revealed lipids that are significantly more or less 

abundant in the tumor region 29.  PCA-LDA was used for analyzing 2D MALDI-MSI data of on-tissue digested 

tryptic peptides from a human formaldehyde-fixed paraffin-embedded (FFPE) pancreatic tumor tissue 

microarray (TMA) and demonstrated that a novel tumor classification model based on direct proteome 

information was feasible 30.  A recent study 31 proposed a new computational pipeline for construction and 

analysis of 3D MALDI-MSI data, including unsupervised image segmentation and peak picking modules, to 

reveal 3D anatomic structures of the mouse kidney.  Two up-to-date reviews about the challenges of statistical 

multivariate analysis of MALDI-MSI data, especially 3D MALDI-MSI data, have addressed that the large size 

of MALDI-MSI data is the main challenge for analysis 32,33.   
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In this study, to systematically understand and evaluate the lipidomic and proteomic complexity as well as the 

spatial distribution of the hypoxic response of breast tumors, we performed 3D MALDI-MSI of MDA-MB-231-

HRE-tdTomato breast cancer tissue sections and applied supervised statistical multivariate analyses to these 

high-throughput 3D MALDI-MSI data.  We also generated a breast cancer protein database by performing 

reverse-phase liquid chromatography (RPLC)-electrospray ionization (ESI)-MS analysis of MBA-MB-231-

HRE-tdTomato cells combined with accurate mass tag (AMT) strategies, and identified 3D MALDI-MSI-

detected tryptic peptides and proteins by searching this AMT-database.   

 

Experimental Materials and Methods 

Figure 1  

MALDI Mass Spectrometric Imaging of Breast Tumor Xenograft Models 

Figure 1 shows an overview of our experimental and data analysis workflow including sample preparation of 

breast tumor tissue, 3D MALDI-MSI, and data processing in human MDA-MB-231-HRE-tdTomato breast 

tumor xenografts 18,34,35.  MALDI-MSI was performed using the 10 µm sections on ITO slides.  Prior to MSI 

analysis, tissue sections were briefly washed by immersion in 70% and 90% ethanol and dried in a vacuum 

desiccator for 10 min.  Trypsin was resuspended in water at a concentration of 0.05 µg/µL, and 5 nL per spot 

was deposited on the tissue in a 150 µm × 150 µm raster by CHIP-1000 Chemical Printer (Shimadzu, Japan).  A 

solution of α-cyano-4-hydroxycinnamic acid (CHCA) matrix (Fluka, Switzerland) was prepared at a 

concentration of 10 mg/mL in 1:1 ACN:H2O/0.1% TFA and was applied to the tissue surface by an ImagePrep 

(Bruker, Germany) application system.  Samples were analyzed on a MALDI-Q-TOF (Synapt HDMS, Waters, 

UK) instrument in time-of-flight (TOF) mode detecting the positive ions in a mass range between m/z 100 and 

m/z 3000.  The MALDI-MS images were acquired with 150 µm × 150 µm spatial resolution.  In this study, we 

have applied a two-step multivariate data analysis method, which consisted of consecutive PCA 36 and LDA 37 

analyses of the hyperspectral 3D MALDI-MSI data obtained from MDA-MB-231-HRE-tdTomato breast tumor 

xenografts as shown in Figure 1.  The identification of m/z peaks in MALDI-MSI was performed based on an 

accurate mass tag (AMT) proteomics database 38,39, which was obtained from the MDA-MB-231-HRE-

tdTomato cell line, and dissected normoxic and hypoxic MDA-MB-231-HRE-tdTomato tumor tissues.  Details 

of experimental materials and methods can be found in the Supplemental Information.   

 

Results 
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Our 3D PCA-LDA analysis of MALDI-MS images of positive ions in the lipid range from m/z 100 to m/z 1000 

in four MDA-MB-231-HRE-tdTomato breast tumor xenografts resulted in 31 top-ranked principal components, 

which accounted for 78% variance in both PCA and LDA analyses 40.  The ratio of between category variation 

to within category variation (B/W) of the first linear discriminant component was 2.261.  Analysis of MALDI-

MS images in the tryptic peptide range from m/z 1000 to m/z 3000 in four MDA-MB-231-HRE-tdTomato breast 

tumors resulted in 100 top-ranked principal components that were analyzed in the LDA analysis.  The B/W ratio 

of the first linear discriminant component was 3.651.   

 

Figure 2 

 

Our data analysis approach captured the overall spatial molecular heterogeneity as well as distinct regions in 

these breast tumor models.  Figure 2 displays PCA and LDA component 1 and 2 reconstructed images for the 

lipid and tryptic peptide ranges, which visualize the heterogeneous distribution of these biomolecules within 

this representative MDA-MB-231-HRE-tdTomato breast tumor.  For example PCA component 2 and LDA 

component 1 reconstructed images (Figure 2, top panel) show distinct biomolecular distributions in the center 

area of the tumor, where hypoxic regions can be found in this representative tumor as evident from the 

distribution of the tdTomato tryptic peptide at m/z 2225.0. 

 

Table 1 

 

By combining the analysis results from all four MDA-MB-231-HRE-tdTomato tumors, we obtained 237 

common m/z peaks from tryptic peptides that were increased in hypoxic regions of the 3D MALDI-MSI data. 

The LDA loading ranks from Table 1 represent the loading abundance in the LDA loading spectra from all four 

tumors.  These m/z peaks were identified using our AMT-database with the requirement that 2 or more tryptic 

peptides per protein needed to be found in the 3D MALDI-MSI datasets and AMT-database, which resulted in 

identification of 110 proteins as listed in Supplemental Table S1.  The top 10 of these hypoxia-regulated 

proteins are listed in Table 1, including plectin (PLEC) involved in the organization of extracellular matrix, 

deoxyuridine 5'-triphosphate nucleotidohydrolase (DUT) an enzyme involved in nucleotide metabolism, 

glucose metabolism related proteins such as triosephosphate isomerase (TPIS) and LDHA, as well as Von 

Hippel-Lindau-binding protein 1 (PFD3), which in complex with Von Hippel-Lindau (VHL) protein can 

translocate from the cytoplasm to the nucleus.  The VHL protein acts as target recruitment subunit in the E3 

ubiquitin ligase complex which recruits hydroxylated HIF-1α under normoxic conditions41. Some of these 

proteins, such as ENOA and hypoxia up-regulated protein 1 (HYOU1), were previously reported to be regulated 
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by tumor hypoxia (Table S1) 42,43.  ENOA is a multifunctional enzyme that, in addition to its role in glycolysis, 

participates in growth control, hypoxia tolerance, and allergic responses 44.  HYOU1 has a pivotal role in 

cytoprotective cellular mechanisms triggered by oxygen deprivation and is highly expressed in macrophages 

within aortic atherosclerotic plaques and in breast cancers 42.  Twelve hypoxia-regulated proteins that we 

identified are associated with glycolysis and glucose metabolism, such as ENOA and fructose-bisphosphate 

aldolase A (ALDOA), glyceraldehyde-3-phosphate dehydrogenase (G3P), malate dehydrogenase, mitochondrial 

(MDHM), L-lactate dehydrogenase A (LDHA), phosphoglycerate mutase 1 (PGAM1), as well as the subunit of 

the cytochrome c oxidase (COX41) and cytochrome b-c1 complex subunit 1 (QCR1), protein disulfide-

isomerase (PDIA1)  involved in cell redox homeostasis (Table S1).  We have also detected extracellular matrix 

modifying proteins such as cathepsin (CATD) and collagen‐binding protein (SERPH) to be up-regulated by 

hypoxia in breast tumors (Table S1).   Some hypoxia-regulated proteins that we identified are associated with 

the PI3K/Akt/mTOR signaling pathway, such as peptidyl‐prolyl cis‐trans isomerase A (PPIA) (Table S1), 14-3-

3 protein beta/alpha (1433B).  We also identified ATP dependent RNA helicase (DDX3X) to be up-regulated 

by hypoxia, which was reported to be directly modulated by HIF-1α in breast epithelial cells 45.  In addition, we 

identified several proteins in our study that have not previously been reported to be up-regulated by hypoxia, 

such as coronin (COR1B), ATP dependent RNA helicase (DDX17), von Hippel‐Lindau‐binding protein 1 

(VBP1), membrane‐organizing extension spike protein (MOES), radixin (RADI), and T‐complex protein 1 

subunit beta (TCPB) (Table S1).   

 

Figure 3 

 

The discovered hypoxia-regulated proteins from Table 1 were analyzed with the protein-protein interaction 

database Reactome (http://www.reactome.org/) to generate a functional protein interaction network, which 

clusters the discovered proteins into distinct biological pathways as displayed in Figure 3.  Hypoxia-regulated 

proteins clustered in several distinct pathways such as glucose metabolism, regulation of actin cytoskeleton, 

protein folding, translation/ribosome, spliceosome, the PI3K-Akt signaling pathway, hemoglobin chaperone, 

protein processing in endoplasmic reticulum, detoxification of reactive oxygen species, aurora B 

signaling/apoptotic execution phase, the RAS signaling pathway, the FAS signaling pathway/caspase cascade in 

apoptosis, and telomere stress induced senescence.    

 

Table 2 
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Similarly, we generated a lipid list for the range of m/z 100 to m/z 1000 from all four MDA-MB-231-HRE-

tdTomato tumors.  The LDA loading ranks from Table 2 represent the loading abundance in the LDA loading 

spectra from all four tumors.  Some m/z candidates were structurally identified by MS/MS analysis.  Since most 

of the metabolites and small peptides were not structurally verified by MS/MS analysis, we did not list them in 

the table.  However, the distribution of several m/z values in the metabolite and small peptide range such as 

phosphocholine (PCho) at m/z 184.1 significantly differentiated hypoxic and normoxic regions as evident from 

Figure S2.  A total of 34 hypoxia-regulated lipid-related ions were identified from four tumors as listed in 

Supplemental Table S2.  Table 2 lists the top 20 of these final hypoxia-regulated lipids, which include distinct 

phosphatidylcholine (PC) species such as PC(16:0/18:1) at m/z 760.5 [M+H]+, PC(18:1/18:1) at m/z 786.5 

[M+H]+, PC(16:1/18:4) at m/z 790.4 [M+K]+, as well as sphingomyelin (SM) SM(d18:1/24:0) at m/z 837.5 

[M+Na]+, and other lipids species (Table 2).  The average number of fatty acid double bonds per PC molecule 

was about 1.7 in both hypoxic and normoxic regions (Table 2).  Hence, there was no difference in the degree of 

saturation in the PC species and all other lipids when comparing hypoxic with normoxic regions in MDA-MB-

231-HRE-tdTomato tumors.   

 

Further validation of spatial co-localization between lipid and tryptic peptide m/z peaks and tdTomato at m/z 

2225.0 was demonstrated in the Supplemental Information in Figures S2, S3 and S4. 

 

Figure 4  

 

The identified hypoxia-up-regulated lipids and proteins can be displayed in 2D and 3D to visualize their co-

localization with hypoxic tumor regions, which were identified by increased tdTomato expression in this MDA-

MB-231-HRE-tdTomato breast tumor xenograft model.  To this end, representative biomolecular MALDI-MS 

images are displayed in both 2D (Figure 4A) and 3D (Figure 4B).  Figure 4 clearly demonstrates that 

PS(14:0/22:6) at m/z 818.4, a tryptic peptide of hypoxia up-regulated protein (HYOU1) at m/z 1047.4, as well as 

LDHA at m/z 1071.5, co-localized with hypoxic regions, in which high levels of a tdTomato tryptic peptide at 

m/z 2225.0 were detected in this breast tumor xenograft model.  The m/z values of all identified hypoxia-up-

regulated lipids and proteins, including the lipids and tryptic peptides presented as biomolecular images, are 

listed in Table S1 and Table S2.   

 

 

Discussion 
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In this study, we have performed multivariate analysis of MALDI-MSI voxels in 3D that were pooled from an 

entire breast tumor volume to ensure that the lipids, peptides and proteins that we have identified through this 

analysis in hypoxic and normoxic tumor regions are statistically and biologically meaningful.  Such an approach 

is demanded by the vast heterogeneity of the biomolecular distribution inside breast tumors, which makes more 

extensive imaging technology, especially the extension from 2D to 3D, necessary in cancer research.  MALDI-

MSI technology provides a comprehensive way to discover and localize biomarkers in breast tumors.  We have 

extended our previous studies and have applied our recently developed methods to mine for hypoxia-related 

lipids, peptides and proteins in 3D MALDI-MSI volume data from MDA-MB-231-HRE-tdTomato breast tumor 

xenografts.   

The MALDI-MSI detection of hypoxic regions in the HRE-tdTomato tumor model 11,17,22 was possible as a 

result of the on-tissue digestion and MALDI-MSI detection of the fluorescent tdTomato protein, which gives 

rise to an abundant tryptic peptide at m/z 2225.0 in MALDI-MSI spectra 21.  We have pre-labeled all voxels as 

either low-tdTomato or high-tdTomato voxels based on their tdTomato tryptic peptide abundance.  Instead of 

using the tdTomato tryptic peptide peak at m/z 2225.0 as a pre-labeling peak to discriminate between hypoxic 

and normoxic voxels, any other detected mass peak that is able to discriminate between hypoxic and normoxic 

tumor regions could be used.  Of course, it is also possible to select mass spectral peaks that discriminate other 

tumor microenvironmental regions such as for example acidic, stromal, or necrotic regions among many others 

depending on the focus of study.  Supervised labeling and annotating MALDI-MSI images is time-consuming 

and expensive.  As a result, it is desirable to reduce the number of required labels without compromising 

classification accuracy.  Semi-supervised learning techniques 46 and active learning (AL) strategies 47 have been 

studied for annotation and classification of hyperspectral MSI data and image segmentation 48.  A non-linear 

multivariate discriminant analysis method, such as the kernel method 49, may also be applied to the feature 

extraction and classification of 3D MALDI-MSI data, which we will test in future studies.  One of the 

assumptions of PCA-LDA analysis is that the distribution of the data follows a normal distribution.  However, 

our MALDI-MSI data is skewed and not normally distributed, so that in this study we performed a pre-

processing step using logarithmic transformation to eliminate skewed characteristics of the data in order to 

approximate the data’s distribution to a normal distribution.  Furthermore, other generalized linear regression 

models with loose assumptions of data distribution may be attempted to improve the data analysis accuracy in 

future studies employing 3D MALDI-MSI.   

We identified 12 hypoxia-regulated proteins that are associated with glycolysis and glucose metabolism.  In 

gluconeogenesis, phosphoenolpyruvate (PEP) is reduced to fructose 1,6-bisphosphate with ALDOA catalyzing 

the last reaction 50.  In glycolysis, fructose 1,6-bisphosphate is oxidized to PEP with ALDOA catalyzing the first 
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reaction 50.  LDHA catalyzes the conversion of L-lactate and NAD+ to pyruvate and NADH in the final step of 

anaerobic glycolysis 51.  PGAM1 is a glycolytic enzyme that catalyzes the internal transfer of a phosphate group 

from C-3 to C-2, which results in the conversion of 3-phosphoglycerate (3PG) to 2-phosphoglycerate (2PG) 

through a 2,3-bisphosphoglycerate intermediate 52.  Several of the hypoxia-regulated glycolytic proteins that we 

identified are regulated by HIF-1, such as ALDOA, LDHA, and G3P 5.  G3P is a key enzyme in glycolysis that 

catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate into 3-phospho-D-glyceroyl 

phosphate 53.  With our 3D MALDI-MSI approach, we have also detected extracellular matrix modifying 

proteins such as CATD and SERPH to be up-regulated by hypoxia in breast tumors.  CATD was detected as an 

extracellular protein loosely bound to the extracellular-matrix in breast cancer 54
.  SERPH, localized to the 

endoplasmic reticulum, binds specifically to collagen and could be involved as a chaperone in the biosynthetic 

pathway of collagen in breast cancer 55.  Some hypoxia-regulated proteins that we identified belong to PPIA, 

which is associated with the PI3K/Akt/mTOR signaling pathway.  A recent finding demonstrated that hypoxia 

can suppress mammalian TORC1 (mTORC1) activity by releasing TSC2 from its growth factor-induced 

association with inhibitory 14-3-3 proteins 56.  Hypoxia is a common finding in advanced human tumors and is 

often associated with metastatic dissemination and poor prognosis 1-3.  Cancer cells adapt to hypoxia by 

utilizing physiological adaptation pathways that promote a switch from oxidative to glycolytic metabolism and 

an activation of different signaling pathways, such as PI3K/Akt/mTOR signaling pathway, RAS signaling 

pathway, and the FAS signaling pathway 57-59.  

Not only breast cancer cells, but also stromal cells such as fibroblasts, endothelial cells, and macrophages exist 

in the hypoxic regions of the MDA-MB-231 breast tumor model 60.  This heterogeneous mixture of different 

cell types within hypoxic tumor regions makes our study difficult to compare with homogeneous cell culture 

experiments in vitro.  Our study is in good agreement with a recent study that identified three common hypoxia-

regulated proteins using MALDI-MSI combined with quantitative proteomics in breast cancer, including 

galectin-1 (LEG1), cytoplasmic 1 actin (ACTB), and one hypoxia down-regulated protein histone H2B type 1-

M (HIST1H2BM) 61.  Our findings presented in this study revealed several hypoxia up-regulated proteins in 

solid tumors that were also identified in cell culture studies of hypoxia followed by quantitative proteomics, 

such as 1433B, ALDOA, PGAM1, LDHA, G3P, ENOA, ANXA5, cofilin-1 (COF1), clathrin heavy chain 1 

(CLH1), elongation factor 1-alpha 1 (EF1A1), prelamin-A/C (LMNA), lamin-B1 (LMNB1), mitochondrial 

malate dehydrogenase (MDHM), and triosephosphate isomerase (TPIS) 61. 

Small metabolites are also detected by MALDI-MSI.  Here we revealed several metabolite peaks that have a 

high LDA loading rank in the analytical results, for example PCho at m/z 184.1.  In our previous studies 17,62, 

we illustrated the spatial co-localization between hypoxia and PCho at m/z 184.1 by multimodal molecular 
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imaging of MDA-MB-231-HRE-tdTomato breast tumor xenografts.  This multimodal molecular imaging 

comprises ex vivo secondary ion mass spectrometry (SIMS) imaging and fluorescence optical imaging 

technology.  Additional studies of all other ions detected below m/z 1000 may further elucidate the molecular 

mechanism underlying breast cancer hypoxia.  

We identified strong positive correlations between PC species, such as PC(16:0/18:1), PC(18:1/18:1), 

PC(18:0/18:1), as well as SM(d18:1/24:0) 63, and the tdTomato tryptic peptide at m/z 2225.0 in hypoxic regions, 

suggesting that the PC species listed in Table 2 are increased in the hypoxic regions of MDA-MB-231-HRE-

tdTomato breast tumor xenografts. However, no difference was observed in the degree of fatty acid saturation in 

these PC species when comparing hypoxic with normoxic regions.  In one of our previous studies, which was 

performed in 2D on the central tumor sections only, we analyzed the lipid composition in hypoxic breast tumor 

regions compared with that in normoxic tumor regions, and found that the concentrations of PC(16:0/18:1), 

PC(18:1/18:1) and PC(18:0/18:1) were higher in hypoxic breast tumor regions compared to normoxic regions 

22.  These same PC species were also identified in the hypoxic breast tumor regions of all four tumors in the 

presented 3D MALDI-MSI analysis.  Other to date unidentified lipid species were also increased in hypoxic 

breast tumor regions compared to normoxic regions (see Table S2).  In this study, we have for the first time 

utilized multivariate methods applied to the analysis of the entire 3D breast tumor volume to systematically 

analyze the lipid distributions in hypoxic tumor regions compared with normoxic tumor regions.  The effect of 

hypoxia in isolated hamster hearts and cardiac myocytes in culture decreased overall phospholipid biosynthesis 

64,65, which was mainly caused by a decrease in high-energy nucleotide levels due to hypoxia 64, and also 

attributed to phospholipid degradation by phospholipase C 65.  Since cancer cells are well known to be able to 

maintain unaltered high-energy nucleotide levels under hypoxic conditions due to their strong reliance on 

glycolysis 66, it is not surprising that we detected an overall increase in several phospholipid species in hypoxic 

breast tumor regions.   

Using 3D MALDI-MSI analysis based on tdTomato-voxel classification of hypoxic regions, we identified 

specific PC and SM species that are either broken down in normoxic regions, or that experience increased 

biosynthesis in hypoxic regions of this breast tumor model.  We also identified specific proteins that are up-

regulated in hypoxic regions of breast tumors.  Our findings provide the breast cancer research community with 

a comprehensive analysis of hypoxia triggered lipidomic and proteomic changes in solid breast tumors.  The 

obtained lists of lipids and proteins may be translated into the clinic for further validation as potential 

biomarkers of hypoxia, similar to recent clinical studies 67,68, and they may provide potential therapeutic target 

for the treatment of hypoxic breast cancers.   
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Figures  

 

Figure 1: Overview of the experimental and data analysis workflow for 3D MALDI-MSI in MDA-MB-231-

HRE-tdTomato breast tumor xenografts.  The workflow includes sample preparation of breast tumor tissue, 3D 

MALDI-MSI, and data processing. 

Figure 2: Display of PC1, PC2, DA1, and DA2 score images of a representative MDA-MB-231-HRE-

tdTomato breast tumor xenograft.  The top row shows examples from the lipid range of m/z 100 to m/z 1000, 

and the bottom row shows examples from the tryptic peptide range of m/z 1000 to m/z 3000, as well as the 

corresponding tdTomato tryptic peptide image at m/z 2225.0.   

Figure 3:  Functional protein-protein interaction network of the hypoxia-up-regulated proteins that were 

identified by our 3D MALDI-MSI analysis of the MDA-MB-231-HRE-tdTomato breast tumor xenograft 

model.  The hypoxia-up-regulated proteins are also listed in Supplemental Table 1.  The Reactome Database 

was used to generate this network display (http://www.reactome.org/), and clusters the discovered proteins into 

distinct biological pathways that were up-regulated in hypoxic regions in these breast tumors.   

Figure 4: Display of representative biomolecular MALDI-MS images in (A) 2D and (B) 3D.  PS(14:0/22:6) at 

m/z 818.4, a tryptic peptide of hypoxia up-regulated protein (HYOU1) at m/z 1047.4, as well as LDHA at m/z 

1071.5, co-localized with hypoxic regions, in which high levels of a tdTomato tryptic peptide at m/z 2225.0 

were detected in MDA-MB-231-HRE-tdTomato breast tumor xenografts.  This was evident in the 2D as well as 

the 3D display.  The entire list of m/z values of hypoxia-up-regulated lipids and proteins, including all detected 

tryptic peptides per protein, is given in Table S1 and Table S2, respectively.   

 

Tables 

Table 1: List of the top 10 proteins that have been identified from the 3D MALDI-MSI data by 3D PCA-LDA, 

ranging from m/z 1000 to m/z 3000 in four MDA-MB-231-HRE-tdTomato breast tumor xenografts. 

Table 2: List of the top 20 lipids that have been identified from 3D MALDI MSI data by 3D PCA-LDA, 

ranging from m/z 100 to m/z 1000 in four MDA-MB-231-HRE-tdTomato breast tumor xenografts.  
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Figure 1 
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Figure 2  
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Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

1 1066.56393 R.QLAEAHAQAK.A 1006.26 ± 273.78 112.05 ± 1.97 8.98

38 1100.56941 R.GGAEGELQALR.A 749.96 ± 220.47 97.66 ± 5.02 7.68

44 1046.51123 K.SLAAEEEAAR.Q 750.13 ± 216.48 103.03 ± 3.24 7.28

49 Plectin 1101.56465 R.QLAEGTAQQR.L 740.79 ± 223.35 94.85 ± 5.81 7.81

61 (PLEC_HUMAN) 1062.52477 R.LQLEACETR.T 732.77 ± 207.58 101.08 ± 4.07 7.25

125 1160.55415 R.SDEGQLSPATR.G 706.56 ± 204.69 98.21 ± 5.51 7.19

142 1286.6851 R.WQAVLAQTDVR.Q 721.06 ± 193.92 98.70 ± 3.38 7.31

154 1015.55303 R.LSVAAQEAAR.L 779.47 ± 199.95 112.79 ± 4.50 6.91

180 1287.69024 K.AQVEQELTTLR.L 713.51 ± 194.42 96.51 ± 4.49 7.39

3

Deoxyuridine 5'-triphosphate 

nucleotidohydrolase, mitochondrial 1082.55884 R.LSEHATAPTR.G 893.43 ± 237.87 103.21 ± 2.03 8.66

54 (DUT_HUMAN) 1284.68405 R.ARPAEVGGMQLR.F 726.66 ± 193.50 102.99 ± 1.39 7.06

3 40S ribosomal protein S2 1082.52985 R.GCTATLGNFAK.A 893.43 ± 237.87 103.21 ± 2.03 8.66

141 (RS2_HUMAN) 1025.59892 R.GTGIVSAPVPK.K 746.72 ± 218.44 105.12 ± 3.78 7.10

3 Triosephosphate isomerase 1082.57813 R.KFFVGGNWK.M 893.43 ± 237.87 103.21 ± 2.03 8.66

84 (TPIS_HUMAN) 1294.63854 A.TPQQAQEVHEK.L 739.23 ± 202.20 98.18 ± 3.25 7.53

182 2992.57705

K.VAHALAEGLGVIACIGEKLDERE

AGITEK.V 293.67 ± 79.22 48.92 ± 5.45 6.00

200 1269.65069 R.IIYGGSVTGATCK.E 721.40 ± 201.32 96.34 ± 3.68 7.49

5

Plasminogen activator inhibitor 1 RNA-

binding protein 1255.63887 R.RPDQQLQGEGK.I 755.45 ± 191.67 104.81 ± 1.51 7.21

237 (PAIRB_HUMAN) 1460.70873 K.SAAQAAAQTNSNAAGK.Q 781.81 ± 200.12 123.57 ± 14.24 6.33

6 Protein S100-A11 1019.50033 K.ISSPTETER.C 726.01 ± 200.71 107.21 ± 2.45 6.77

80 (S10AB_HUMAN) 1141.59595 K.NQKDPGVLDR.M 790.57 ± 208.05 99.82 ± 3.43 7.92

7 ATP-dependent RNA helicase 1283.64118 R.MLDMGFEPQIR.K 760.57 ± 193.62 107.23 ± 1.84 7.09

86 1336.63874 R.QTMLFSATQTR.K 702.61 ± 195.82 97.25 ± 3.30 7.22

164 1252.62798 R.TAQEVETYRR.S 716.36 ± 195.50 100.47 ± 3.73 7.13

7 1283.62256 V.SGKDYNVTANSK.L 760.57 ± 193.62 107.23 ± 1.84 7.09

65

L-lactate dehydrogenase A chain 

(LDHA_HUMAN) 1071.54036 R.FRYLMGER.L 748.54 ± 232.27 95.23 ± 5.14 7.86

212 1495.77502 K.IVSGKDYNVTANSK.L 754.60 ± 202.60 101.29 ± 0.99 7.45

8 Von Hippel-Lindau-binding protein 1 1051.5418 K.KLDEQYQK.Y 814.67 ± 249.20 102.53 ± 3.17 7.95

15 (PFD3_HUMAN) 1310.63682 K.KKESTNSMETR.F 725.23 ± 190.66 100.76 ± 0.59 7.20

9 1067.52279 S.RSYTSGPGSR.I 924.64 ± 265.22 108.79 ± 1.07 8.50

52 Keratin, type II cytoskeletal 8 1081.56359 K.SYKVSTSGPR.A 803.44 ± 232.35 98.58 ± 6.10 8.15

66 (K2C8_HUMAN) 1060.56326 R.KLLEGEESR.I 775.70 ± 206.40 97.91 ± 4.92 7.92

Ratio of Ion Abundance in 

High tdTomato Regions to 

Low tdTomato Regions

(DDX17_HUMAN,DDX18_HUMAN,DDX3

X_HUMAN,DDX3Y_HUMAN,DDX5_HUM

Loading 

Rank Descriotion M/Z Peptide Squence

Ion Abandance in High  

tdTomato Regions (Mean ± 

Standard Errors)

Ion Abandance in Low tdTomato 

Regions (Mean ± Standard 

Errors)
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Figure 3 
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Table 2  
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Figure 4 
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