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Drexhage’s seminal observation that spontaneous emission rates of fluorophores vary with distance
from a mirror uncovered the fundamental notion that a source’s environment determines radiative
linewidths and shifts. Further, this observation established a powerful tool to determine fluorescence
quantum yields. We present the direct analogue for sound. We demonstrate that a Chinese gong at a hard
wall experiences radiative corrections to linewidth and line shift, and extract its intrinsic radiation
efficiency. Beyond acoustics, our experiment opens new ideas to extend the Drexhage experiment to
metamaterials, nanoantennas, and multipolar transitions.
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In 1968, Drexhage reported a seminal experiment [1,2]:
he demonstrated that the spontaneous emission decay rate
of a fluorophore varies when its position in front of a mirror
is varied on the scale of half a wavelength. This results from
the backaction of the mirror through reflection of the
emitted field [3,4]. Equivalently, the effect can be described
as the variation in the local density of optical states (LDOS)
caused by the mirror [5]. This experiment has spawned an
entire field of radiation engineering, including photonic
band gaps to suppress LDOS [6], the use of microcavities to
boost Purcell effects [7], and more recently plasmonics [8].
Aside from acting on decay rates, corresponding to the
imaginary part of the transition frequency, the reflector
backaction can also modify its real part, inducing a
resonance shift [9,10]. Aside from these fundamental
cavity-QED implications, Drexhage’s experiment also
stands out for practical purposes. Since backaction only
affects radiative damping, and not competing nonradiative
decay channels, the contrast of the variation in rate yields
a direct measure of the emitter quantum efficiency [2,3,
11–18]. Contrary to any other method to find quantum
efficiencies, this measurement requires no absolute inten-
sity data, nor trust in a reference standard. While in
principle any LDOS variation may be used, Drexhage’s
planarized geometry is the only one controlled sufficiently
to be a practical calibration tool. It has therefore been
applied to determine quantum efficiencies of ensembles
of molecules [2], rare earth ions [11,12], quantum dots
[14,17,19], single molecules [16], NV centers [18], and
nanoantennas [16,20].
In this Letter, we present a time-domain version of

Drexhage’s experiment for a classical audible acoustic
source. We use a Chinese gong placed in front of a concrete
wall that acts as a reflector. While originally conceived as a
didactic tool, the experiment provides new perspectives
on the physics of sound emission and beyond, for instance,

in optics of metamaterials, and multipole transitions.
Inspecting the spectrum of the acoustic transient response
after the gong is hit, one can conveniently analyze several
resonant modes at the same time, highlighting crucial
differences between optical and acoustic Drexhage experi-
ments. Classical acoustic textbooks predict that the radi-
ation resistance of acoustic monopoles and multipoles
varies in front of a reflective wall [21–25]. Yet, measure-
ment of this effect to our knowledge has been proposed
only based on cumbersome angle-resolved measurements
of the radiation pattern that is numerically integrated to
obtain a relative measure of total radiated power [26]. On
the contrary, we directly measure the variation of radiation
resistance from the spectral properties of the gongs’ ring-
down. Moreover, we also present a radiative shift analo-
gous to radiative shifts in optics, or radiative reactance
effects for antennas, yet entirely unforeseen in acoustics.
In this sense, our experiment is to our knowledge unique
as a direct demonstration of both radiative linewidth and
line shift modulation of an acoustic resonator source that
is quantitatively explained by backaction. By analogy to
optics, our experiment provides a simple, calibration-free
method to quantitatively extract intrinsic radiation efficien-
cies of acoustic resonators. Such easy measurements of
radiation efficiency can be used as calibration for the
viscoelastic damping of materials, which is cumbersome
to obtain in conventional measurement schemes [27].
Before discussing our experiment it is instructive to

revisit how Drexhage described fluorescence lifetime
variations in front of a mirror [1–3,28]. The classical
electrodynamic analogue of the change in fluorescence
decay rate is the change in total power that an oscillating
electric dipole of fixed current radiates. In the presence
of a perfectly conducting (electric) mirror, image charge
analysis (Fig. 1) applies. The field at an observation point
R ¼ Rðcos θ; sin θÞ, with R ≫ λ reads
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EðRÞ ≈ eikR

R
Sðθ;ϕÞðeik cos θd þ qe−ik cos θdÞ; ð1Þ

given a source emitting at a frequency ω ¼ ck, placed a
distance d from the mirror. Two essential ingredients
determine the overall radiation features: first, the amplitude
and sign q of the image dipole, and second the radiation
pattern Sðθ;ϕÞ. When transposing this analysis to acous-
tics, two considerations are important. First, the reflection
coefficient of a hard wall has an opposite sign compared
to an electric mirror. In other words, while electric fields
have a node at a mirror, pressure waves have an antinode.
Consequently, mirror dipoles have opposite signs q for the
electric and acoustic case [Fig. 1(a) versus Fig. 1(b)]. A
second crucial difference is that acoustic radiation patterns
Sðθ;ϕÞ are strongest along the dipole axis (cos2 θ pattern)
exactly opposite to the sin2 θ behavior in optics. Integrating
the radiated power over the half space above the mirror
results in the acoustic equivalent to Drexhage formulas
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γ∞
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−
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with x ¼ 2kd ¼ 4πd=λ, and η denoting the acoustic radi-
ation efficiency [29]. Here, γ⊥;jj denotes the linewidth for
dipole orientation perpendicular, respectively parallel to the
mirror and γ∞ is the linewidth in the absence of the mirror.
Morse and Ingard list expressions similar to Eq. (2), with
η ¼ 1, for the radiation impedance of an acoustic dipole
[21,22] at a hard wall. As in optics, at zero distance we
find zero and double radiated power (assuming η ¼ 1),
indicating complete destructive or constructive interference
between source and image, depending on source dipole
orientation. However, due to the opposite image charge

sign, the sign of the oscillations is reversed. Full cancella-
tion occurs for acoustic dipoles perpendicular to the
wall, while in electromagnetics it requires dipoles along
the mirror. For this scenario [red line in Fig. 1(c)], as one
moves away from the reflector the contrast in oscillations
is much stronger for sound than light, due to the different
radiation patterns.
For our experiment, we used a widely available Chinese

“Chao” gong, a slightly convex round brass plate of 0.5 mm
thickness and 10 cm radius, and a turned-up rim. The gong
is suspended with a string from a frame. A reproducible
excitation is obtained by a wooden sphere (diameter
≈1 cm) rolling down a rail, hitting the gong approximately
in the middle [Fig. 2(a)]. To pick up the gong response,
a small magnet was glued on the backside, again in the
center of the gong. The magnet induces a current in a
pickup coil that was recorded by a laptop sound card with
8 kHz sampling rate. Gongs have a plethora of modes with
varying radial and azimuthal quantum number, forming an
exciting platform for generalized Drexhage experiments. In
this Letter, we select modes with azimuthal order m ¼ 0,
since excitation and measurement are at the center. We
recorded transients of 20 seconds, long enough to observe
the full ring-down [Figs. 2(b) and 2(c)]. We recorded a total
of 80 acoustic ring-downs for distances to a concrete wall
ranging from 7.5 to 120 cm. For each measured transient,
we computed the Fourier spectrum [Figs. 2(d) and 2(e)],
finding nine distinct resonances between 300–3500 Hz,
in addition to a ca. 1 Hz signal, associated with the small,
ca. 1 mm amplitude swinging motion of the gong due to
being hit by the sphere. Here, we focus on the two lowest
frequency modes, observed at 306 and 561 Hz. According
to finite-element simulations discussed further below, the
mechanical deformation [Fig. 2(f)] for the lowest frequency
m ¼ 0 eigenmode corresponds to the “drum” acoustic mode,
while the second mode has two radial nodes. Both modes
have an almost dipolar far-field radiation pattern with a
dipole moment normal to the gong [Fig. 2(g)].
For both gong modes we fit a Lorentzian to the peaks

identified in the Fourier-transformed transients to find
resonance frequency f, and damping rate γ, plotted in
Fig. 3 as a function of the separation between the gong and
the wall. The linewidth clearly displays a characteristic
oscillation resembling that of the fluorescence lifetime
in the original Drexhage experiment. For the first mode
(306 Hz, Q of 1200) we find ≈2 oscillations in the
measured distance range which reduce in amplitude with
increasing distance. At the shortest distance of 7.5 cm the
decay rate reduces by ≈8%, while at z0 ¼ 35 cm it
increases by 7% relative to the natural linewidth. For the
second mode (561 Hz, Q ¼ 860) we observe more oscil-
lations in the same distance range, commensurate with the
shorter acoustic wavelength. Further, these oscillations
have larger contrast, indicating a higher radiation effi-
ciency. Similar to the case of optical emitters with subunity
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FIG. 1. (a) Image charge construction in optics for a vertical
dipole above a mirror. (b) In acoustics, the mirror gong is not
along, but opposite to, the source gong. Panel (c) shows the decay
rate enhancement predicted by image theory for an acoustic
dipole perpendicular to (red), and parallel to the interface (blue).
The symbols and thin line show the electrodynamic case.
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quantum efficiency, the contrast in the Drexhage oscilla-
tions is not as large as expected for an ideal gong according
to Fig. 1. Indeed, backaction only affects the radiative
damping rate, and not any other intrinsic nonradiative
decay. As in optics, this can be captured defining the
radiation efficiency η, already introduced in Eq. (2). While
in acoustics with “radiation efficiency” one sometimes
means comparison of radiated power to some reference
object [30], here we intend the term as an absolute measure,
i.e., as the ratio between total energy that the gong mode
emits as sound to the total energy contained in the mode.
This definition for acoustics [31] is analogous to the
radiative efficiency definition for antennas [32] and to
the radiative quantum efficiency of a fluorophore. Lines in
Fig. 3 show the image-theory prediction overplotted with
the data, with, as an adjustable parameter, the radiation
efficiency (note that γ∞ can be separately measured in the
absence of the wall). We find excellent agreement for fitted
radiation efficiencies of η ¼ 9.5% and 20% for the first and
second gong mode, respectively. This radiation efficiency is
a property of the gong modes, and not of their excitation or
detection, and results from viscoelastic damping in the
brass. The excellent fit further indicates that, while the gong
is lossy, the wall is much closer to an ideal reflector than a
silver mirror in optics. We note that nonideal wall reflection
(amplitude coefficient r) can be approximately included in
Eq. (1) by reducing jqj to jrj, leading to a reduction in
oscillation contrast by a factor 1 − ð1 − jrjÞ2 (negligibly
different from unity for concrete).
In optics, the frequency shift of radiative transitions

near mirrors has been a longstanding topic of research
[4,33–35]. In principle, backaction should cause frequency
shifts of the same order of magnitude as the decay rate
change. Since in optics one deals with MHz decay rates,
radiative line shifts cannot be realistically observed, except
for atoms [9,10,33,35,36]. In these systems, however,
various quantum-mechanical effects contribute to line

shifts, so apart from how to measure shifts, also how to
separate quantum-mechanical and classical contributions
has been debated [4,33–35]. Attempts to measure radiative
line shifts with optical scatterers as opposed to emitters
provide the advantage of large intrinsic radiative line shifts
[37] but are compounded by the difficulty of correcting
for spatial variations in the standing wave driving fields.
Our acoustic measurement represents an ideal test bed to
experimentally observe these effects. Indeed, our measure-
ment shows a clear redshift for short distances (< 0.2 m)
between gong and reflector that is fully explained by
interaction of the gong with its mirror image.

FIG. 2. (a) Sketch of the experiment. A wooden ball launched on a rail generates a δ excitation at the gong center. The gong
displacement is picked up by a small magnet glued to the back of the gong, and a pickup coil. Panel (b) [enlargement in (c)] shows a
time-domain trace, showing a ring-down with many frequency components. Panel (d): the Fourier transform of the transient shows
distinct resonances. The main resonances [enlargement shown for mode 1, 306 Hz in panel (e)] have a Lorentzian line shape.
(f) Acoustic eigenmode profile for modes 1 and 2, the lowest order modes of zero angular quantum number. (g) Far-field radiation
patterns for the gong in free space for modes 1 (blue circles, FEM result) and 2 (red squares, FEM result) indicate dipolelike
emission (black curves indicating cos2 θ). In terms of integrated radiated flux for modes 1 and 2, respectively, over 99% and 95%,
are in the dipole mode.
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FIG. 3. (a),(b) Fitted damping rate for mode 1 (306 Hz) and
mode 2 (561 Hz) versus distance to the wall. Open orange points
indicate individual measurement points, while solid blue ones
show their averages, binned in 5 cm intervals. Overplotted is
Eq. (2) with parameters γ∞ ¼ 0.255 Hz and η ¼ 0.09, respec-
tively γ ¼ 0.654 Hz and η ¼ 0.20. Panels (c),(d) show the line
shift for each mode, where the theory contains no further
adjustable parameters.
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Mathematically, the radiative line shift cannot be
obtained by assuming fixed-frequency driving, and per-
forming a radiation pattern integral [38], as done to derive
Eq. (2). Instead, consider a small acoustic oscillator of
resonance frequency ω0 with displacement coordinate u
that carries dipole moment DðtÞ ¼ ρ=ð4πÞWüðtÞ (where ρ
is the background density and W is the entrained mass
tensor). We analyze backaction by subjecting the oscillator
(intrinsic damping from loss plus radiation γ∞) to the force
FsðtÞ from its own mirror image

üþ γ∞ _uþþω2
0u ¼ FsðtÞ=m:

The ansatz ½uðtÞ;FðtÞ� ¼ ½u0;F0�e−iðω0þΔωÞt−γ=2t results in
(assuming Δω ≪ ω0)

Δω ¼ −
Refu†

0 · F0g
2mω0u20

and γ ¼ γ∞ þ Imfu†
0 · F0g

mω0u20
:

Since the force F0 is linear in displacement u0, the
frequency shift Δω and decay rate change are amplitude
independent. Through F0 ∝ Gðr; rÞ · u0, in the decay rate
change we recognize the imaginary part of the Green
function Gðr; r0Þ, known as LDOS in optics, which in
energy balance terms appears when one evaluates how
much work the displacement does against the force from its
own mirror image. Likewise, the real part of the Green
function enters the line shift. For a perfect mirror, an image
dipole approach for F0 predicts

Δω⊥ðxÞ
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¼ η
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: ð3Þ

As in optics [4,29,33,35], close to the mirror the resonance
will redshift, meaning the mirror image provides driving
along the displacement. Returning to our experiment, all
the parameters required to compare the measured frequency
shift with the predicted one are already fully determined
by the fit to the measured oscillation in damping rate.
Overplotting the prediction from Eq. (3) with the measured
shift shows excellent correspondence. In other words,
the measured line shift is completely consistent with the
backaction interaction of the gong with its own reflection.
To further validate our results, and provide further

insights, we consider finite-element (FEM, COMSOL

MULTIPHYSICS) simulations for mode 1 with a single radial
antinode, and the higher mode 2 [43]. These eigenmodes
have a dominant dipole character [Figs. 2(f) and 2(g)],
validating our assumptions in the above theory. Simulations
for an ideally elastic, lossless brass gong in front of a solid
wall predict that both linewidth and center frequency [38]
closely follow the image charge prediction equations (2)
and (3) with η ¼ 1, as shown in Figs. 4(a) and 4(b) [38].

The agreement is especially good (percent level) for mode
1, while for mode 2 there is a small deviation that can be
captured as an apparent offset of about λ=20 in the distance
axis. We attribute this to the fact that for mode 2 the gong is
not very small compared to the wavelength (gong diameter
about λ=3). In simulations for various viscoelastic loss
tangents tan δ ¼ ImE=ReE (with E the complex Young
modulus), we find smaller linewidth variations that are well
captured by image theory taking η < 1. As exemplified for
mode 1 in Fig. 4(c), we find excellent correspondence
taking a relation between radiation efficiency and material
of the form η ¼ 1=ð1þ κ tan δÞ, where κ−1 ¼ 0.165 × 10−5

is a mode-dependent parameter. Interestingly, the Drexhage
experiment yields a radiation efficiency that directly maps
onto a calibration of viscoelastic damping. For instance,
assuming the FEM geometry accurately represents our
gong, the measured η ¼ 0.09 (mode 1) translates into a loss
tangent of 1.6 × 10−4 at 306 Hz, reasonable for brass
alloys. This provides an upper bound, as the gong sus-
pension and readout may also impart loss. Using a less
resistive coil or circuit, or all-optical sensing can reduce this
loss. Compared to measuring viscoelastic damping using
calibrated time-harmonic stress-strain measurements [27]
this method is extremely simple. A frequency series could
be mapped using multipolar modes, or a set of resonators.
Sound absorption in the wall that is used as reflector has
only a small effect on the apparent radiation efficiency.
For instance, including realistic acoustic loss of concrete
in the simulations shows only a < 0.1% difference. The
key is that absorption does not preclude extremely large
impedance mismatch, ensuring a near-unity reflection
constant. We refer to the Supplemental Material [38] for
a comparative analysis of wall nonidealities.
To conclude, we demonstrated the acoustic analogue of

Drexhage’s seminal experiment, finding both a backaction
induced change in damping and resonance frequency. This
experiment is first an object lesson in radiation reaction
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physics that is seminal in the study of spontaneous
emission rates and radiative line shifts in optics. A second
important quality of the experiment is that it transposes
Drexhage’s method as a calibration of radiation efficiency
to sound. Generally, it is not trivial to determine the
intrinsic radiation efficiency of an acoustic emitter. Most
efficiency measurements require a calibrated comparison of
how much excitation energy is loaded into a mode to total
radiated output power. As in optics, an absolute measure of
total radiated power is difficult, as one needs calibrated
detectors that capture all solid angles. Regarding the
driving, one notes that in the work of Lim [26] the electric
driving circuit was implicitly assumed to yield constant
acoustic source strength, whereas in fact any energy
balance would need accounting for all electrical and
mechanical losses. We speculate that the ability to simply
measure radiation efficiency can also impact material
characterization, by mapping radiation efficiency onto
viscoelastic loss tangents. Finally, a third merit of our
experiment is that it provides a perspective on generaliza-
tions of Drexhage’s experiment. Backaction depends on
whether the source has electric dipole character, or maybe
magnetic, chiral, or multipolar moments, a fact pursued to
understand magnetic dipole transitions in rare earth ions
[44], quadrupole moments of quantum dots [15], and
bianisotropic resonances in split rings [45]. Conversely,
backaction can be used as a probe of unconventional
boundary conditions that a reflector may provide, for
instance when it is not a standard mirror, but a metama-
terial, or metasurface [46,47]. While a challenge in optics,
Drexhage experiments with multipoles and metasurfaces
can be readily explored in acoustics or radio frequencies.
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