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Introduction 
 

 

1.1 Tumor heterogeneity 

Tumors are biologically heterogeneous. Considerable differences are observed 

between individuals with the same tumor type, due to variation in genetic subtypes 

and non-genetic factors1. Heterogeneity also exists within individual tumors2, as 

depicted in Figure 1.1. Saunders et al. defines intratumor heterogeneity as ‘the 

variation in genome, epigenome, proteome and cell and tissue behavior that is found 

within an individual tumor and its stromal constituents’3. 

 

 

Figure 1.1 Schematic representation of inter- and intratumor heterogeneity. 

Tumor cells are embedded in surrounding tissue or stroma, which consists of various 

cell types, including fibroblasts, immune cells and extracellular matrix components. 

Taken together they comprise the tumor microenvironment. In addition, variations in 
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blood vessel architecture are accompanied by regional differences in oxygen and 

nutrient supply, pH, cell death, and drug uptake. 

These local tumor characteristics influence treatment response. For example, 

tumor cells with an inadequate oxygen supply (hypoxic cells) are known to be more 

resistant to radiotherapy and chemotherapy than cells with a sufficient oxygen 

supply4, 5. The earliest observations of the insensitivity of tumors to radiotherapy 

under reduced oxygen conditions date back to the 1930s6. 

Recent evidence suggests that genetic intratumor heterogeneity can also 

contribute to treatment failure and drug resistance7, 8. These reports show that some 

tumors consist of genetically different cancer cells that vary in their sensitivity to 

chemotherapeutic drugs. Despite advances in the characterization of intratumor 

heterogeneity, especially on the genetic level, the question remains how to translate 

this knowledge into clinical practice9, 10. 

Given the importance of the tumor microenvironment, tumor heterogeneity is also 

studied within a tissue context. Magnetic resonance imaging and positron emission 

tomography approaches are able to characterize and quantify this phenomenon11, 12. 

In this thesis the capabilities of mass spectrometry imaging are explored to investigate 

tumor heterogeneity. 

1.2 Mass Spectrometry Imaging 

Mass spectrometry imaging (MSI) is based on a surface sampling process in which 

mass spectrometric data is acquired in a spatially resolved manner. With this 

technique, multiple analytes can be analyzed simultaneously from a surface: for each 

detected ion species an image can be generated that represents the distribution of this 

analyte on the surface. 

The earliest examples of mass spectrometry imaging date back almost fifty years, 

when secondary ion mass spectrometry was used to analyze inorganic surfaces13. 

However, the analysis of biological samples only became possible with the 

development of electrospray ionization (ESI) and matrix-assisted laser 

desorption/ionization (MALDI), so-called ‘soft’ ionization techniques. The application 

of MALDI-MSI to study biomolecules directly from tissue sections was first 

demonstrated by Caprioli and coworkers in the late 1990s14. Since then, the technique 

has been established as a useful tool in biomedical and clinical research. The number 

of applications is still increasing.  
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1.3 Application of MSI in cancer research 

A wide variety of biomolecules can be studied with mass spectrometry imaging. So far, 

most applications use MALDI-MSI to analyze proteins and proteolytic peptides. 

However, also lipids, metabolites and pharmaceuticals are studied. Other ionization 

techniques used for biomedical and clinical imaging are for example desorption 

electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS). More 

recently developed methods include laser ablation electrospray ionization (LAESI) 

and rapid evaporative ionization mass spectrometry (REIMS). Table 1.1 briefly 

summarizes the main characteristics of these techniques. 

Table 1.1 Techniques used for biomedical and clinical MSI. *For MALDI the sample preparation 
can also include tissue washing, derivatization and proteolytic digestion. In general, the 
preparation depends on the tissue type, the targeted molecular class and the required spatial 
resolution. 

 Sample 

preparation 

Ionization Spatial 

resolution 

Molecular 

class 

MALDI Matrix coating* Laser ablation and 
desorption/ionization 

10-200 µm Lipids, 
peptides, 
proteins, 
metabolites 

DESI None Desorption by solvent 
droplets and ESI-type 
ionization 

>100 µm Mostly lipids 
and metabolites 

SIMS None or 
matrix/metal 
coating 

Sputtering with a primary 
ion beam 

<1 µm 
dynamic 
mode, >1 µm 
static mode 

Elements, fatty 
acids  
and lipids 

LAESI None Laser ablation combined 
with ESI 

>200 µm Lipids, 
peptides, 
proteins, 
metabolites 

REIMS None Thermal evaporation >500 µm Phospholipids 
 

MSI has two features that make it well suited for cancer research: it requires no 

target-specific labeling and can thus be used as a discovery tool where the targets are 

unknown prior to analysis. In addition, MSI analysis leaves the tissue intact. Molecular 

distributions, as measured by MSI, can be directly compared with the microscopic 

structure (i.e. histology) of the tissue. Combined, these features enable two types of 

approaches: 
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1) Histology-driven approach. Mass spectra are extracted from specific tissue 

regions and used for tissue classification or biomarker (pattern) discovery. The 

studies described in Chapter 3 and 4 are examples of this approach. 

2) MSI-driven approach. Tissue is annotated based on the mass spectral profiles 

generated by MSI. Regions with distinct MS profiles are then compared to the 

tissue’s histology. 

The information obtained with either of the approaches can be correlated with 

biomedical or clinical data. In clinical MSI, research is mostly concerned with 

biomarker discovery. Biomarker discovery aims to find measurable indicators of 

disease state. These indicators can then be used as surrogate markers of disease to 

assist in diagnosis, predict disease progression or aid in treatment decisions. 

The cellular specificity of MSI might partly explain its ability to find biomarker 

(patterns), even though only abundant tissue analytes can be detected. A tissue area of 

100 x 100 µm, which is a routinely used pixel size for MALDI-MSI, contains around 25 

cells, assuming an average cell size of 20 µm. In comparison, approaches that use laser 

capture microdissection need at least 500 cells, and more often populations of 

thousands of cells, to study cell-type specific proteomes15, 16. 

Small tissue pieces such as needle core biopsies from patients can be easily 

analyzed with MALDI-MSI. Tissue microarrays (TMAs) consist of arrays of tissue cores 

with a typical diameter of 0.6-2 mm. These cores are selected to enable comparison 

between patients. Using TMAs, hundreds of patient samples can be studied within a 

single experiment and thus under highly similar conditions. Moreover, TMAs are often 

constructed from well-documented patient cohorts, for which follow-up data has been 

sometimes collected over many years. These features make TMAs attractive samples 

for MALDI-MSI analysis. 

Most MALDI-MSI studies use fresh frozen tissue. However, tissue microarrays 

contain formalin-fixed paraffin-embedded (FFPE) tissue. FFPE tissue is conserved by 

dehydration and cross-linking of the proteins with formalin. After formalin fixation, 

the tissue is embedded in paraffin to preserve its morphology and allow thin 

sectioning. FFPE tissue is widely used for clinical applications, due to easy storage and 

handling. MALDI-MSI analysis of FFPE tissue became possible with the adaptation of 

antigen retrieval protocols used for immunohistochemistry17, 18. The preparation of 

FFPE tissue is more time-consuming as compared to the preparation of fresh frozen 
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tissue, and includes steps to remove paraffin and reverse part of the cross-linking to 

make the proteins amenable to MALDI-MSI analysis. 

1.4 Clinical and biomedical questions 

A central theme in today’s MSI field is whether we can use the molecular profiles 

generated by MSI to aid medical doctors, specifically pathologists, in clinical decision 

making. Can MSI data provide information to diagnose disease, predict disease 

progression or aid in treatment choice?  

Information to guide treatment would be helpful in cases where only a subset of 

patients benefits from a treatment. MALDI-MSI was for example successfully used in 

the differentiation of Spitz nevus (benign) from Spitzoid malignant melanoma19. For 

pathologists it is sometimes impossible to distinguish between the two lesions, but 

ideally none of the Spitz nevus patients is unnecessarily subjected to surgery and 

chemotherapy. Other examples in which MSI could potentially aid in treatment choice 

are described in Chapter 3 and 4.  

MSI can also be used for more fundamental cancer-related research. The 

investigation of phenotypic intratumor heterogeneity and the identification of lipids 

co-localizing with hypoxic tumor regions are notable examples20, 21. In general, the 

molecular profiles generated by MSI also provide information to further investigate 

underlying biological processes with other bioanalytical techniques. 

1.5 Practical aspects of data analysis 

Data analysis is an important part of MSI projects. The generated data sets are large 

(ranging from a couple to hundreds of gigabytes) and require extensive processing 

before they can be used for hypothesis testing22, 23. 

In general, MALDI-MSI based biomarker discovery aims to find differences 

between classes (e.g. healthy and diseased) that have predictive power. For this 

purpose a statistically significant difference between the classes is not sufficient; the 

classification accuracy depends on the overlap in distributions between the classes. 

Single biomarkers are typically not sensitive and specific enough; more often 

combinations of markers are used. Different algorithms can be employed to build a 

classifier, as reviewed by Hilario et al.22. In many cases, MALDI-MSI data is high-

dimensional. This means that the number of measured m/z values is much larger than 



Chapter 1 
 
 

 
 
14 

the number of measured samples. Classifying high-dimensional data poses some 

challenges, which are described in detail in Chapter 4. 

The choice for a data analysis strategy depends not only on the aim of the study, 

but also on the type and number of samples available. For studies with human 

samples a much larger number of samples is needed to account for variability 

introduced by genetic and environmental influences (e.g. diet, age) as compared to 

studies using animal models. Moreover, careful matching of human samples is 

required to minimize the effect of these other sources of variability in the data. 

Patient-derived xenograft models are human tumors implanted and propagated in 

immunodeficient mice. They retain the heterogeneity of human tumors, but are grown 

in a controlled laboratory environment and thus exhibit less variability as compared 

to clinical samples. 

Finally, biomarkers require validation using an independent sample set and 

preferably also another technique, as for example immunohistochemistry24, 25. The 

interested reader is referred to Jones et al. and Schwamborn et al. for a detailed 

overview of study setup and data analysis methods for biomedical and clinical MSI23, 26. 

1.6 Scope of the thesis 

The research presented in this thesis was mainly carried out in the Biomolecular 

Imaging Mass Spectrometry group at the FOM Institute AMOLF in Amsterdam. At the 

time the thesis was written, the research group moved to the University of Maastricht. 

The division of Imaging Mass Spectrometry is now part of the Maastricht Multimodal 

Molecular Imaging institute. The research still focuses on the development and 

application of analytical tools for MSI. This thesis presents examples of MSI-based 

methods to study tumor tissue. 

The research was carried out in collaboration with research groups from the 

Netherlands Cancer Institute (Chapter 3), the University Medical Center Utrecht 

(Chapter 4), and Johns Hopkins University School of Medicine (Chapter 5). 

Chapter 2 describes one of the bottlenecks in biomolecular MSI: identification of 

the analyte(s) of interest. Typically only a few of the hundreds of observed 

biomolecular signals in a MSI spectrum can easily be identified. This chapter presents 

some of the current strategies for protein identification with a focus on advances in 

instrumentation, experimental workflow and bioinformatic tools that improve the 
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number and confidence of protein identifications. It also includes a description of 

MALDI-MSI. 

Chapter 3 presents an approach that combines MALDI-MSI on tissue microarrays 

with principal component analysis and linear discriminant analysis (PCA-LDA) to 

predict treatment response. The feasibility of this approach was evaluated on a set of 

patient-derived xenograft models of triple-negative breast cancer. We also investigate 

to which extent heterogeneity between the tissue cores from a particular tumor model 

compromises response prediction. 

Chapter 4 further investigates the use of tissue microarrays for MALDI-MSI. It 

compares different multivariate data analysis methods to predict lymph node 

metastasis and disease-free survival for a set of head and neck cancer patient samples. 

In addition, it discusses the challenges associated with MALDI-MSI based biomarker 

discovery. 

Chapter 5 focuses on intratumor heterogeneity. This chapter demonstrates the 

detection of the exogenous hypoxia marker pimonidazole by MALDI-MSI directly from 

tissue sections. It shows the visualization of hypoxic regions in a breast tumor 

xenograft model with this approach. In addition, it presents the identification of 

endogenous hypoxia-associated molecules. 

Chapter 6 presents the conclusions and provides an outlook on future research. 
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Protein identification  

in mass spectrometry imaging 
 

 

With a rapidly growing number of biomedical applications of mass spectrometry 

imaging (MSI) and expansion of the technique into the clinic, spectrum annotation is an 

increasingly pressing issue in MSI. Although identification of the species of interest is the 

key to answering biomedical research questions, only a few of the hundreds of observed 

biomolecular signals in each MSI spectrum can easily be identified or interpreted. So far 

no standardized protocols resolve this issue. 

Present strategies for protein identification in MSI, their limitations and future 

developments are the scope of this chapter. We discuss advances in MSI technology, 

workflows and bioinformatic tools to improve the confidence and number of protein 

identifications within MSI studies.  
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2.1 Introduction 

In recent years, technological and methodological advances have brought mass 

spectrometry imaging (MSI) to the biomedical field. MSI allows for the analysis and 

visualization of peptides, proteins, lipids, metabolites and pharmaceuticals directly 

from biological tissue and cell samples27, 28. The technique uses a surface sampling 

process in which mass spectra are collected at discrete locations according to a 

predefined Cartesian grid. In this way, the distribution of ions of interest can be 

mapped. 

MSI has several advantages compared to other imaging techniques such as 

immunohistochemistry (IHC) or positron emission tomography. It has the capability 

to detect hundreds of (unknown) compounds simultaneously in one molecular 

imaging experiment, allowing multiplexed analysis and discovery-based research. As 

MSI requires no target-specific labeling, unmodified species can be studied. 

Importantly, in contrast to standard mass spectrometric analysis, which requires 

tissue homogenization, MSI leaves the molecular distribution in the tissue intact, so it 

can be utilized to assess molecular differences between specific cellular regions within 

a tissue. 

An increasing number of studies report on applications of MSI in the biomedical 

field. MSI is used in distribution studies of pharmaceutical compounds and their 

metabolic products for drug evaluation29, 30 and in (clinical) proteomics applications31, 

32. MSI has already been employed to assist in diagnosis, prognosis and biomarker 

discovery. The technique is used to construct protein profiles that predict disease 

status or progression, to identify molecular patterns for disease prognosis and to 

assess molecular markers in treatment response studies33-35. Not only can a better 

fundamental understanding of the molecular processes underlying disease be 

acquired using MSI, but this knowledge can also aid in the development of new drugs 

and treatments. The study of the molecular basis of intratumor heterogeneity, for 

example, is not only expected to lead to improved understanding of tumor biology, but 

also fits in the trend towards personalized medicine36, 37. 

The most widely used ionization technique for MSI is matrix-assisted laser 

desorption/ionization (MALDI)38. MALDI-MSI was introduced in 1997 by Caprioli and 

coworkers and uses a matrix, typically an acidic aromatic compound14. As the matrix 

compound absorbs energy at the wavelength of the laser, exposure of the crystals to 

laser pulses results in desorption and ionization of the sample. Ions are separated 
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based on their mass-to-charge (m/z) ratio, usually by a time-of-flight (TOF) mass 

analyzer, which is high-throughput and sensitive, and has a broad mass range39. 

Despite the fast developments in MSI technology and workflows, several 

challenges still need to be addressed for MSI to become an established tool in 

biomedical and clinical research. Apart from the need for improved mass resolution, 

spatial resolution and sensitivity of the instruments used for MSI, an important 

limitation is that only a few of the hundreds of observed signals in each mass 

spectrum can be easily identified or interpreted. Annotation of ions of interest 

requires an additional step in the experimental workflow and so far no standardized 

protocols exist that solve this issue. Identification might be hampered by (unknown) 

modifications, even when the compound class is known. This holds for example for 

ions derived from proteins, where posttranslational modifications (PTMs), protein 

isoforms and chemical modifications resulting from sample preparation or proteolysis 

can hinder interpretation. 

However, from the point of view of a biomedical researcher identification of the 

species of interest is an essential step to solve a biomedical research question. 

Although recently studies have been published in which statistical data analysis tools 

were used to annotate tissue sections solely based on their mass spectrometric 

profiles36, 37, 40, MSI data needs to be complemented with information on the nature of 

the biomolecular species to access the full potential of MSI41. 

With a rapidly growing number of biomedical applications and expansion of MSI 

into the clinic, spectrum annotation is an increasingly pressing issue in MSI. Present 

strategies to provide annotation of MSI spectra, their limitations, and newly developed 

identification strategies are the scope of this chapter. As proteins are the biomolecules 

most often probed by MSI in a biomedical context, this chapter focuses on protein 

identification in MSI. However, confident chemical assignment of any biomolecular 

species in MSI spectra faces similar challenges and some of the approaches described 

here could also be employed in that context. 

2.2 MS-based protein identification methods 

Mass spectrometry (MS) is an established analytical technique for protein character-

ization both at both species level and at proteome level. Numerous, often very 

sophisticated, methods of MS-based protein identification have been developed42, 43. 
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Current MSI has implemented MS-based protein identification methods in its work-

flows according to the needs and constraints posed by the technique. 

In general, two approaches exist for MS-based protein identification: 

1) In a top-down experiment, identification is performed through intact mass 

measurement followed by tandem MS (MS/MS) analysis. Sequence-specific 

fragmentation patterns are used for identification through database searching, in 

which the experimentally obtained fragments are compared with theoretical 

fragments. A top-down approach in MALDI-MSI works for small-to-medium-sized 

proteins up to 7-10 kDa, because large singly charged molecules will not easily 

dissociate. 

2) In a bottom-up experiment, a protein or protein mixture is first enzymatically 

digested. The resulting proteolytic peptides are analyzed by MS (so called peptide 

mass fingerprinting), and MS/MS in the case of a protein mixture. In a bottom-up 

imaging approach, multiple peptide matches per protein are required for 

confident identification of the protein. 

An ideal MSI experiment consists of automatically triggered MS/MS experiments on 

proteins or peptides directly from tissue, thereby combining the localization of species 

with their identification within a single experiment. However, low sensitivity seriously 

hampers the identification as compared to standard identification approaches using 

protein extraction followed by gel-based separation or liquid chromatography (LC) 

coupled to electrospray ionization (ESI) MS/MS. The low sensitivity is caused by ion 

suppression effects due to the complex molecular composition of tissue. In addition, 

ions generated by MALDI typically have only unit charge. The resulting inefficient ion 

activation of larger ions renders intact proteins too big for direct identification 

through fragmentation. As a result, efficient MS/MS can only be performed in a mass 

range of 500-3500 Da on the majority of mass spectrometers used for MSI. Figure 2.1 

summarizes the protein identification workflows used in MSI. 

Top-down approaches in MSI 

Few examples of a top-down approach used in MALDI-MSI can be found in literature. 

Minerva and coworkers identified several endogenous peptides up to 3.5 kDa using 

MALDI-TOF/TOF directly on mouse pancreatic tissue44. 
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Figure 2.1 Workflow for MS-based protein identification. Identification can be performed within 
the MSI experiment itself (direct identification) or by using independent MS/MS data followed 
by mass correlation (indirect identification).   
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Alternative identification strategies are employed to annotate larger masses, which 

combine fractionation of tissue extracts by LC, MALDI-MS for fraction selection, 

followed by ESI-MS/MS45-47. In this way, identification of the 8.4 kDa cysteine-rich 

intestinal protein 1 in breast cancer tissue was demonstrated45. Top-down analysis of 

the 14+ charge state resulted in identification of the protein, which was found to be 

correlated with human epidermal growth factor receptor 2, an important marker for 

treatment response prediction. These classical identification strategies are labor 

intensive and require extraction of the protein of interest, so they remain limited to 

only a few identifications per study. 

An alternative approach to standard fragmentation techniques in MSI, such as 

TOF/TOF and collision induced dissociation (CID), is in-source decay, where ions are 

fragmented in the source region before extraction48. However, this technique suffers 

from the lack of precursor ion selection, which makes the mass spectra hard to 

interpret. In-source decay is therefore only rarely used for protein identification. A 

recent trend is the development of electron-based MS/MS techniques. Electron-

induced dissociation of singly-charged peptides has been demonstrated49. 

Despite the limited utility of a top-down approach due to technical and practical 

constraints, it should be kept in mind that by studying intact proteins, not only 

information on the complete amino acid sequence is retained, which allows for high-

confidence protein assignment, but also on the protein state. Cazares and coworkers 

for example, identified specifically a fragment of the MEKK2 protein to discriminate 

tumor from normal tissue50. This type of information typically cannot be obtained 

using IHC or a bottom-up approach (See ‘Indirect identification approaches’). 

Bottom-up approaches in MSI 

In a bottom-up approach, proteins are digested on-tissue while their spatial 

distribution is preserved. Trypsin is the enzyme of choice for digestion and can be 

applied by automated spotting devices. These devices deposit picoliter (pL) droplets 

in an array with a spot size of 100-200 µm. After incubation, matrix can be deposited 

onto the tissue using the same device51. The resulting tryptic peptides are subjected to 

MS/MS directly on-tissue52, 53. This in situ digestion approach is often considered the 

method of preference for MSI studies, because it facilitates on-tissue fragmentation, 

hence peptide identification within the imaging experiment itself. An additional 

advantage is that on-tissue digestion can be used to ‘unlock’ proteins from the 
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formalin-fixed paraffin-embedded tissue widely used in bio(medical) research, the 

proteome of which would otherwise remain inaccessible for MSI analysis17, 54-56. 

However, the on-tissue digestion approach also suffers from considerable 

background signal from the tissue. This results in identification of mainly highly 

abundant proteins and only a limited number of peptides per identified protein. The 

limited amino acid sequence coverage per protein may also result in loss of 

information on protein state, for example on type and location of PTMs. 

Several improvements in sample preparation and instrumental set-up have found 

implementation in bottom-up MALDI-MSI workflows. The addition of the detergent n-

octylglucoside to the trypsin buffer solution was found to increase the number of 

peptide signals and their signal intensities and led to enhanced detection of lipophilic 

proteins53. Furthermore, on-tissue chemical peptide derivatization strategies were 

developed for enhanced identification. Franck and coworkers showed that on-tissue 

derivatization of tryptic peptides is compatible with an in situ digestion approach57. 

MS/MS spectra recorded on conventional MALDI-TOF instruments are often difficult 

to interpret due to the different types of ion series generated. This results in only 

small sequence tags being available for identification. The addition of a N-terminal 

negative charge by derivatization with sulfonation agents generated (almost) 

complete y-ion series and even allowed for de novo sequencing (i.e. without the help of 

a protein database) of tryptic peptides. 

A recent advancement is the combination of ion mobility spectrometry (IMS) with 

MSI51, 53, 55, 58, 59. IMS is a gas-phase chromatographic technique, which separates ions 

based on their collision cross-section (i.e. size and shape). The extra dimension 

provided by the post-ionization ion mobility separation allows separate inspection of 

isobaric contributions to a spectrum. This is especially useful for complex spectra 

resulting from the analysis of in situ digested tissue, which show unresolved peaks 

from overlapping species, as for example isotopic distributions of peptide species, 

lipids and matrix ions. In this way, the complexity of MS/MS spectra is reduced. Figure 

2.2 shows how ion mobility separation prior to fragmentation of two singly charged 

tryptic peptide ions that both have a molecular weight of m/z 1039 resulted in their 

identification (from tubulin and ubiquitin, respectively)59. An MS/MS database search 

using the Mascot engine without ion mobility separation resulted in a score which was 

too low for confident identification of either of the two tryptic peptides and the 

proteins they originate from. 
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Figure 2.2 Ion mobility separation combined with MSI. (a) On-tissue MS/MS spectra of ion 
mobility separated tryptic peptides (m/z 1039), identified as tubulin and ubiquitin fragments. 
(b) Ion images of separated tubulin and ubiquitin fragments. Without ion mobility separation 
(no drift time selection), the ion image would have corresponded to the superposition of the 
two images (Adapted with permission59). 

Indirect identification approaches 

Indirect approaches for protein identification are often used to avoid sensitivity issues 

with on-tissue fragmentation. The aim of these strategies is to eliminate ion 

suppression effects, which introduce ionization bias in the MSI analysis, and to 

increase the dynamic range of the analysis. 

In short, MSI data are matched with data generated using complementary 

methods that include a fractionation step (mostly LC-MS)60. This is not a trivial 

undertaking as ESI, the most commonly used ionization technique for LC-MS due to 

the simplicity of the interface, favors the ionization of different peptides as compared 

to MALDI. LC-MALDI is used less frequently61, and LC coupled to secondary ion MS 

still has to prove its utility62. In an indirect approach, independent experimental data 

serves as a tissue-specific reference database, which can be searched to identify 

peptides in the MSI data (Figure 2.1). 
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The capability of MSI to measure complex samples might be further enhanced by 

targeting specific cell populations from tissue by laser capture microdissection 

(LCM)63, which is an especially useful enrichment technique for tissue showing a high 

degree of heterogeneity (e.g. breast cancer tissue)64. 

Mass correlation between MSI data and data from independent experiments 

requires extensive (manual) data interpretation, often combined with prior 

knowledge of the species of interest. Wide mass tolerance windows for mass matching 

of up to ±2 Da are reported65. Masses with tolerance windows of this size theoretically 

match thousands of possible peptides. In these cases, additional validation is an 

absolute necessity to prevent erroneous protein identification. 

An MSI study of tumor margins in renal cell carcinoma reported on the use of an 

additional peptide characteristic to eliminate false positive protein identifications66. 

Tryptic peptides from tissue extract were isoelectrically focused using an immobilized 

pH gradient strip to provide additional information on the peptide’s isoelectric point 

to match the experimental with theoretical peptides. 

A recent paper by Schober and coworkers described an improved indirect 

strategy, which combined MALDI-MSI with complementary off-line LC coupled to ESI-

MS/MS67, 68. All results were based on accurate mass measurements recorded on 

Fourier transform MS instruments, which allowed for improved quality and quantity 

of peptide identifications. Fourier transform ion cyclotron (FT-ICR) and Orbitrap mass 

spectrometers have mass accuracies in the low to sub ppm range instead of the at 

most 10-50 ppm mass accuracy obtained by using TOF systems. The high mass 

accuracy and mass resolving power of these instruments provide enhanced means to 

resolve the complexity of biological samples, but the use of these mass analyzers for 

protein identification in MALDI-MSI is still limited to only a few examples due the 

limited sensitivity of FT-ICR, the limited mass range of Orbitrap, and the relatively 

long measurement time needed to obtain high accuracy69, 70. Moreover, an indirect 

accurate mass approach only works if both the MALDI-MSI data and the LC-ESI data 

are recorded with high mass accuracy. 
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2.3 The importance of mass accuracy for protein 

identification 

Mass accuracy can be defined as the degree of similarity between a measured value 

and its theoretical value. If multiple species are assessed, usually the root mean square 

or mass measurement error is used. Precision is defined as the degree to which a 

measured value is similar during a (series of) experiment(s). In MS-based protein and 

proteomics research, statistical tools have already been widely implemented to assess 

accuracy, precision and hence confidence of identification71, 72. 

MS-based identification can be extremely accurate and precise because it uses the 

intrinsic property of a species (i.e. its mass), which can be measured by MS in an 

unbiased way. A highly accurate monoisotopic mass (sub ppm for a peptide of 1 kDa) 

provides information on mass defect and isotopic distribution, and can even specify 

the elemental composition. Accurate mass measurements lead therefore to improved 

confidence in protein assignment. 

In addition, an important parameter in peptide identification, directly related to 

mass accuracy, is the threshold value (or mass tolerance window) used in a database 

search. The set threshold is a tradeoff between maximum specificity and maximum 

sensitivity. At strict thresholds, true positives are potentially rejected, whereas, at less 

strict thresholds, the mass resolution of the recorded data might not be fully used. 

Until now, little emphasis has been placed on assessment of peptide annotation 

reliability in MSI studies. Instead, orthogonal validation methods such as IHC are 

employed. However, recent high mass resolution MSI studies show that results can 

largely vary depending on the mass bin width used for ion selected images, which 

directly depends on the mass accuracy and mass resolution of the data, as exemplified 

in Figure 2.373. 

A 2011 study described the assessment of the mass accuracy of MALDI-MSI data74. 

In this paper, MSI data were linked to MS/MS data from independent experiments by 

employing an intermediate step using accurate mass data from FT-MS measurements. 

The mass accuracy of the recorded MALDI-MSI data was found to decrease with 

increasing mass range and the applied mass tolerance window for mass correlation 

was adjusted accordingly. These examples demonstrate the trend to use accurate 

mass data to improve the number and the confidence of peptide annotations. 
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Figure 2.3 High mass resolution MSI not only improves the reliability of peptide assignment, but 
also the spatial distribution information. (a) Zoomed Orbitrap mass spectrum of a MALDI-MSI 
analysis of a mouse brain. (b) An overlay of ion images generated with an m/z bin width of 
±0.01 shows the different spatial distributions of a myelin tryptic peptide (red) and a 
phospholipid (green) at m/z 726.405 and m/z 726.515, respectively. (c) An ion image generated 
with a larger bin width of ±0.1 leads to a superposition of the two images, hence the spatial 
distribution of the two ions is not resolved. (d) An overlay of ion images of a tryptic peptide of 
SNAP-91 (green) and a myelin peptide isotopomeric peak (red) at m/z 727.315±0.01 and m/z 
727.405±0.01 and (e) an ion image at m/z 727.4±0.1 show the same effect (Reprinted with 
permission73). 

2.4 Data analysis 

Protein identification also heavily depends on the data processing and mining strategy 

chosen, the quality of the protein database and the database searching algorithms 

used. As MSI data analysis uses bioinformatic tools and databases developed for MS-

based protein and proteomics research, the challenges in data analysis show large 
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overlap. An introduction to the already well-described problems associated with 

protein identification from MS/MS spectra can be found in reference75. However, 

existing data analysis tools are often specifically designed for (ESI)-MS data, so they 

might not perform optimally on MSI data. Occasionally, in-house developed algo-

rithms are reported68, 74. In a MALDI-MSI study of the obese mouse pancreas, for 

example, MS/MS data sets were clustered to allow identification of structurally related 

peptides74. 

Importantly, the large data sets generated in MSI experiments create new 

bioinformatic challenges. Data are processed and mined to reduce the influence of 

technical and analytical variation and extract information relevant to the biological 

problem, with either standard software (e.g. Biomap, ClinProTools76) or in-house 

developed algorithms77. The interested reader is referred to www.maldi-msi.org that 

provides a concise overview of available MSI software. 

Key here is identification and extraction of relevant spatial and chemical features. 

Mass spectra generated from different locations on a tissue probe differences in 

molecular make-up of that tissue, so they can be used for clustering or classification. 

Data mining methods allow identification of signature masses for specific tissue 

regions or tissue states, which can be assigned using either protein extraction or in 

situ digestion approaches. In this way, MSI enables the targeted analysis of relevant 

species for biomarker discovery. 

Supervised methods make use of prior knowledge about the tissue, and typically 

use histological images to define different regions of interest (ROIs)17, 50, 78-80. These 

approaches are referred to as ‘histology-directed’ MSI78, 81. Differentially expressed 

peaks between the ROIs are identified using statistical tests and used to generate 

classification models. A recent report showed that histology-directed classification of 

MALDI-MSI data led to the identification of differentially expressed modified protein 

species in skin cancer (e.g. multiply acetylated forms of histone H4 and H2A)78. As 

PTMs reflect the actual biological state of proteins, they can be highly relevant for 

biomarker discovery. 

Unsupervised methods, including multivariate methods such as Principal 

Component Analysis and Hierarchical Clustering, can reveal histology-independent 

regions37, 82. Combinations of (un)supervised methods and newly developed strategies 

have also been reported36, 83, 84. The use of multiple multivariate techniques on one 
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MSI data set can provide a more accurate description of regions with distinct MS 

profiles, but this type of study is still at a developmental stage85. 

Furthermore, the large data sets generated by MSI have a big impact on the 

computational infrastructure necessary for data processing and analysis77. Further 

advancements in high throughput analysis are crucial to improve speed and reliability 

of protein annotation. 

2.5 Validation 

In MSI, the use of additional validation methods is a necessity. As explained in Section 

2.3, one should be careful about inferring identities between (imaging) data sets. Once 

MSI has pinpointed towards interesting species, they are typically further investigated 

using techniques from biochemistry, such as IHC55, 79 and in situ hybridization80. The 

use of standards, common practice in drug distribution studies, is uncommon for 

independent validation of peptides or proteins, because the preparation of (synthetic) 

isotope-labeled peptides or protein standards is often far from straightforward. 

Also targeted chemical labeling of proteins for direct protein identification from 

tissue is reported. The addition of a tag allows for enhanced detection of specific 

species in an MSI experiment, but requires prior knowledge of the protein of interest. 

The advantage of such an approach is that it allows for multiplexed analysis of 

preselected proteins, usually a problem when using IHC. Moreover, it enables the 

analysis of low-abundance and high-mass proteins, which are hard to probe by 

MALDI-MSI. 

Thiery and coworkers showed multiplex immunolabeling of proteins, named 

TAMSIM for TArgeted multiplex MS IMaging86. In this strategy, proteins are linked to 

an antibody with a mass tag, which is released upon laser irradiation and 

subsequently detected by MSI without the need for matrix addition. Lemaire and 

coworkers showed the similar concept of ‘Tag-Mass’: the addition of a probe with a 

photocleavable tag of known mass linked to mRNA or protein87, 88. Proof of principle 

was shown for the 180 kDa carboxypeptidase D membrane protein from rat brain 

tissue (Figure 2.4). As antibodies can show high specificity for their corresponding 

antigen, this method allows for specific protein identification in an MSI experiment 

and can be used for validation, as shown for a new potential biomarker for ovary 

cancer25. The Tag-Mass technology is now patented for use in quantitative diagnostic 

assays. 
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Figure 2.4 Example of the Tag-Mass concept. MALDI mass spectra from adjacent rat brain tissue 
sections after IHC against carboxypeptidase D (CPD), with (a) untagged and (b) tagged 
secondary antibody. Two characteristic signals for the Mass-Tag (P-PC) were observed (m/z 
1686.43 and m/z 1703.23). (c) Corresponding ion image at m/z 1686.43. (d) Rat brain tissue 
before analysis. Similar results were obtained with secondary antibody detection with (e) 
fluorescence or (f) peroxidase staining using 4-chloronaphtol (Reprinted with permission87). 
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More recently, multiplexed detection of proteins with imaging mass cytometry was 

reported89. Imaging mass cytometry is an approach that combines immunohisto-

chemistry with lanthanide-labeled antibodies and laser-ablation inductively-coupled-

plasma MS (LA-ICP-MS). Giesen and coworkers showed the simultaneous imaging of 

32 proteins at a 1 µm spatial resolution. However, all validation methods have one 

disadvantage in common, namely that they only allow the validation of a limited 

number of proteins per study.  

An emerging approach for validation is to study the same sample with different 

MS or spectroscopic techniques as magnetic resonance spectroscopic imaging90, 91. In 

addition to its use for independent verification, a multimodal approach can provide a 

more comprehensive view of the sample being investigated. 

2.6 Conclusions and future perspectives 

The greatest strength of MSI is that it can provide relatively unbiased molecular 

information in an anatomical context. Used as a discovery tool, MSI can highlight 

interesting species to be further investigated. Alternatively, MSI can be used to 

visualize a biomedical hypothesis. Although MSI has proved its capability in 

biomedical research, it is not yet widely adopted. This is partly due to the still existing 

gap between technique-based method development of MSI and the demands from the 

biomedical research community. 

This chapter addressed one of the main bottlenecks, namely protein identification 

in an MSI experiment. At the moment, spectral annotation is a laborious, often 

complicated task for each new set of samples within a laboratory. The number of 

annotations therefore remains limited to at most tens per study, while the studied 

spectra contain easily 10-fold more signals. 

An obvious way to improve annotation is to merge MSI data with complementary 

data, as exemplified by the indirect approaches described. However, this will require a 

substantial effort in bioinformatics. Algorithms need to be developed to improve data 

correlation and to allow for smarter and faster annotation workflows. Furthermore, 

the implementation of statistical evaluation methods commonly used in MS-based 

protein identification is expected to enhance the reliability of an MSI study. 

Recently, a case was made for improved identification through community 

annotation41. An online data repository for published MSI data sets should allow for 

data re-mining. In this way, one can benefit from annotations by laboratories with 
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other expertise. This initiative exemplifies the need for improved annotation within 

the MSI community, but will face several challenges, not least standardization of data 

formats. 

Databanks with patient data combined with biomaterials already exist to facilitate 

(bio)medical research. Although the set-up and use of these databases is governed by 

strict guidelines from medical ethics, we are convinced that MSI data integration with 

these ‘biobanks’, but also with imaging data from other imaging modalities and ‘-

omics’ data will greatly improve our capability to mine and annotate MSI data. 

Recently, the technique of laserspray ionization (LSI) was applied to protein 

analysis directly from tissue sections92. Although this technique is not yet suitable for 

imaging experiments, the generation of multiply charged ions directly from tissue, 

combined with high mass resolution and mass accuracy, might facilitate protein 

imaging and identification in the future. The generation of multiply charged species in 

LSI makes possible electron transfer dissociation (ETD) fragmentation on tissue. 

Formation of c-ions and z-ions during ETD provides complementary fragmentation 

information and also suggests the possibility to study posttranslational modifications 

retained during ETD fragmentation but lost during the CID typically used in MSI. 

For MSI to become a standard technique in (bio)medical research, it is of the 

utmost importance that MSI workflows for protein identification are further 

developed to provide useful information to the (bio)medical research community. As 

researchers extend MSI technology to study more complex biological problems, there 

will be an increasing need for (bioinformatic) tools that improve the confidence and 

number of identified proteins within these studies. Ongoing efforts to embed MSI into 

the interdisciplinary world of life sciences will move the field into the next decade.



 
 
 

 
 

33 

  

The use of mass spectrometry imaging  

to predict treatment response of  

patient-derived xenograft models  

of triple-negative breast cancer 
 

In recent years, mass spectrometry imaging (MSI) has emerged as a promising technique 

in oncology. However, the effective application of MSI is hampered by the complexity of 

the generated data. Bioinformatic approaches that reduce the complexity of these data 

are needed for the effective use in a (bio)medical setting. This holds especially for the 

analysis of tissue microarrays (TMAs), which consist of hundreds of small tissue cores.  

Here we present an approach that combines MSI on tissue microarrays with 

Principal Component Analysis and Linear Discriminant Analysis (PCA-LDA) to predict 

treatment response. The feasibility of such an approach was evaluated on a set of 

patient-derived xenograft models of triple-negative breast cancer (TNBC). PCA-LDA was 

used to classify TNBC tumor tissue based on the proteomic information obtained with 

matrix-assisted laser desorption/ionization (MALDI) MSI from the TMA surface. 

Classifiers based on two different tissue microarrays from the same tumor models 

showed overall classification accuracies between 59 and 77%, as determined by cross-

validation. Reproducibility tests revealed that the two models were similar. A clear effect 

of intratumor heterogeneity of the classification scores was observed. These results 

demonstrate that the analysis of MALDI-MSI data by PCA-LDA is a valuable approach for 

the classification of treatment response and tumor heterogeneity in breast cancer. 
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3.1 Introduction 

In cancer treatment, there is a great need to develop tools that can predict response to 

treatment. Mass spectrometry imaging (MSI) is a powerful analytical technique that 

provides complex molecular information to meet this objective. In particular, matrix-

assisted laser desorption/ionization (MALDI) MSI has shown its applicability to 

cancer research: it can probe intratumor heterogeneity36, 37, 85, and it can be used for 

tissue classification17, 45, 93, 94, disease prognosis and prediction of treatment 

response95-97. High-throughput analysis of clinical samples has been made possible by 

the establishment of protocols for the MALDI-MSI analysis of tissue microarrays 

(TMAs)17, 18. This has enabled the large-scale analysis of heterogeneous samples of 

limited quantity. 

The analysis of TMAs with MSI easily generates thousands of spectra from 

hundreds of different tissue cores. In addition, each spectrum consists of hundreds of 

different molecular ions. Bioinformatic approaches that reduce this complexity are 

required to exploit the full potential of MSI. Up to now, a small number of studies have 

reported the use of PCA in combination with LDA or related statistical methods for the 

classification of MSI data94, 98-100. PCA is used as dimensionality and noise reduction 

method, followed by LDA to build a classification model. Efficient separation of tissue 

type based on lipid profiles has been shown99-101. Also disease-specific peptides and 

proteins could be identified in osteoarthritis and pancreatic cancer by this method94, 98. 

 Here we report on the use of MALDI-MSI in combination with PCA-LDA to study 

the proteomic content of triple-negative breast cancer (TNBC) patient-derived 

xenograft (PDX) tumors. TNBCs account for approximately 15% of breast cancers102. 

TNBC is characterized by the lack of expression of the estrogen receptor, progesterone 

receptor, and the human epidermal growth factor receptor type 2 (HER2). Therefore, 

it is considered difficult to treat because no targeted treatment is available yet for this 

subtype of breast cancer, and resistance to conventional toxic chemotherapy 

frequently develops103, 104. 

Proteomic profiling of breast cancers has shown its usefulness for response 

prediction and the selection of more effective treatment strategies95, 96. In current 

practice, no reliable predictor of treatment response in TNBC before systemic 

treatment starts is available. The analysis of xenograft models by MALDI-MSI enabled 

us to study the proteomic content of these tumors under controlled conditions. For 

each tumor model multiple tissue cores were analyzed with MALDI-MSI and used to 
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predict response to the chemotherapeutic drug cisplatin. Here we determine the 

predictive strength of MALDI-MSI data for treatment response using PCA-LDA. We 

also establish to which extent heterogeneity between the tissue cores from a 

particular tumor model compromises response prediction. 

3.2 Experimental section 

Tissue microarrays 

The triple-negative PDX models had been specifically generated to study the 

mechanisms involved in chemotherapy response and acquired resistance. In a 

separate study, the models were treated with cisplatin, as clinical studies have shown 

a good response of TNBC to this cytotoxic drug105. The measured initial response of 

the models was categorized based on tumor size (Figure 3.1): nine models responded 

well to the cisplatin treatment, resulting in a reduction of the tumor size (‘good 

response’). Three models did not shrink or grow (‘stable disease’), and seven showed 

reduced growth when compared to the control tumors (‘progression’). Also, three 

models did not respond to the treatment (‘no response’). 

 

Figure 3.1 Response to cisplatin. Black lines show the growth of untreated controls. In all graphs, 
the y-axis depicts tumor size (percentage of start size), and the x-axis depicts the days after 
start of treatment. Representative examples for each response are shown. 
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Two TMAs (called hereafter TMA1 and TMA2) were constructed, both containing 

cores (triplicate 0.6 mm cores) from all 22 PDX breast cancer models. All tumor 

models were poorly differentiated (grade III) TNBCs as assessed by immunohisto-

chemistry. The TMAs were constructed from treatment-naive samples. The TMA2 

contained tissue cores from the same tissue blocks as TMA1, plus extra tissue cores 

from different tumors of the same PDX models. In this way, the reproducibility of the 

method and the tumor-to-tumor variation could be determined. Figure 3.2 shows 

hematoxylin and eosin (H&E) stained adjacent sections from the TMAs. 

 

Figure 3.2 Optical images of H&E stained TMA sections. All cores on the TMAs are shown, 
including control cores and cores from non-TNBC PDX models, which were not included in this 
study. Right hand panel: a relatively homogeneous core with a tumor cell content of 90% (top) 
and a heterogeneous core of the same tumor containing stromal (pink) regions (bottom). 

Tissue preparation 

Serial 5 µm sections were cut from the TMA blocks and mounted onto indium tin 

oxide coated glass slides. The tissue cores were deparaffinized using xylene washes 

(100%, twice for 5 min) and rehydrated using graded ethanol washes (100% twice 

and 95%, 80% and 70%, all 5 min) followed by water washes (twice, 3 min) to make 

the TMAs amenable to MALDI-MSI analysis. Antigen retrieval was performed by 

heating the slides in a 10 mM Tris buffer (pH 9.0) at 95 ⁰C for 20 min. The slides were 
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allowed to cool down to room temperature, rinsed with water and dried in a 

desiccator. 

Local, on-tissue digestion was performed with trypsin, thereby preserving the 

spatial localization of the proteolytic peptides. A trypsin solution of 0.05 µg/µL was 

spotted in an automated manner (CHIP 1000, Shimadzu). A total of 5 nL was 

deposited per spot with a raster size of 200 x 200 µm. Trypsin spots measured 

approximately 100 µm in diameter. The sections were incubated overnight at 37 °C. 

Finally, α-cyano-4-hydroxycinnamic acid (CHCA) matrix solution was prepared at 

a concentration of 10 mg/mL in 50% acetonitrile (vol/vol) and 0.1% trifluoroacetic 

acid (vol/vol) in water and was sprayed onto the sections by a vibrational sprayer 

(ImagePrep, Bruker Daltonics). 

MALDI-MSI experiments 

MALDI-MSI analyses were performed using a MALDI quadrupole time-of-flight 

SYNAPT HDMS mass spectrometer (Waters Corporation). The mass spectrometer was 

operated in TOF mode optimized for positively charged ions. Data were acquired in 

the range of m/z 200-3500 at a raster size of 150 µm. On average 16 spatially resolved 

spectra were recorded for each core. 

Data processing 

Tissue core-specific spectra were extracted for data processing and subsequent 

statistical analysis. The spectra were subjected to peak detection using an in-house 

developed algorithm106. The ChemomeTricks toolbox for MATLAB was used for 

further pre-processing and analyses106. All spectra per core were averaged to create 

one representative spectrum per core. Averaged spectra per core were used to reduce 

the influence of outliers in the data and improve the signal-to-noise-ratio. This 

approach improved the stability of the multivariate analysis results. A similar 

observation was reported by Gerbig et al.99. Histological assessment of the tissue cores 

revealed that they were highly heterogeneous. Spectra were selected only from tissue 

regions with at least 80% tumor cells to reduce the variability caused by the presence 

of mostly stroma, but also some necrotic regions. On average 13 spectra were selected 

per tissue core and used for subsequent analyses. This selection was compared with 

the full data set (on average 16 spectra per core) to determine the influence of the 

introduction of additional variability. 
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Multivariate statistical approach 

Data sets 

We performed multivariate statistical analyses on the data sets of both TMAs (TMA1 

and TMA2). The aim was to identify a proteomic signature that could differentiate 

between the tumor models that did respond to the cisplatin treatment (responders) 

and the models that did not or hardly respond to the treatment (non-responders). For 

this purpose, tumor models that had experimentally shown to have a ‘good response’ 

or ‘stable disease’ were categorized as responders. Tumor models that had shown ‘no 

response’ or ‘progression’ were categorized as non-responders. 

Table 3.1 Samples used for construction of the classifiers based on TMA1 and TMA2. 

Data set Response class No. of tumor models No. of tissue cores 

TMA1 Responder 12 70 
 Non-responder 10 51 

TMA2 Responder 12 113 

 Non-responder 10 67 

 

The average tissue core spectra were either assigned to the responder (n = 12) or non-

responder (n = 10) class (Table 3.1). On average six and eight tissue cores per tumor 

model were present in TMA1 and TMA2, respectively. Measurements of consecutive 

TMA sections were used to build the classifier. The data analysis workflow is sum-

marized in Figure 3.3. 

Principal Component Analysis 

The spectra were normalized to their total ion count and the mass intensities were 

standardized to zero-mean and unit variance prior to PCA. PCA was performed on the 

average tissue core spectra with 3524 variables (mass intensities) each. PCA performs 

a linear transformation of the data in the direction of the largest variance. It defines 

new variables consisting of linear combinations of the original ones, so-called 

Principal Components (PCs). The first purpose of PCA was to reduce the 

dimensionality of the data. Second, PCA was employed to discard noise. It is important 

to note here that by using PCA it is assumed that the differences between the 

treatment response classes are one of the main sources of variation in the data and 

are thus described by the PCs. Otherwise these differences are lost in the PCA-based 

data reduction. 
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Figure 3.3 Summary of the data analysis workflow. The classifiers based on TMA1 and TMA2 
are used to predict treatment response on the tumor, tissue core and pixel (single spectrum) 
level. 

Linear Discriminant Analysis 

Two individual classifiers were constructed based on TMA1 and TMA2, respectively. 

For this purpose, we used a two-step supervised classification method using a 

combination of PCA and LDA107. The PCs were used as input variables for the LDA. 

LDA calculates a linear combination of variables, in this case the PCs, that maximizes 

the ratio of the between-class variance and the within-class variance (Fisher’s 

criterion). In other words, it finds the combination of PCs that leads to small 

discriminant score distances in LDA space within each class and large score distances 

between the classes. A tumor model is assigned to class i if the mean discriminant 

score of the tissue core spectra of this model is closest to the mean discriminant score 

of class i. 
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Double cross-validation 

Classifiers built on highly dimensional data sets are prone to overfitting. It is, 

therefore, important to evaluate whether the classifier has been built with random 

fluctuations in the data or has predictive power. Classifiers are typically validated on 

independent samples. However, only 22 PDX models with tested initial treatment 

response were available. Instead, a leave-one-out cross-validation procedure was 

used to estimate the error-rates of the classifiers. Leave-one-out cross-validation is an 

accepted validation method when the size of the data set is small108. Before anything 

else, the number of input PCs for the PCA-LDA needed to be estimated. This estimation 

was incorporated in the cross-validation by using a double leave-one-out cross-

validation procedure to avoid the introduction of bias, as previously described109. 

The double leave-one-out cross-validation was performed as follows: all spectra 

from one tumor model were set apart as test spectra. Next, the optimal number of PCs 

was determined based on leave-one-out cross-validation using the spectra from the 

remaining 21 tumor models. The number of PCs to use was chosen based on optimal 

classification performance of the classifier, using the least number of PCs. The optimal 

number of PCs was 34 for the classifier based on TMA1, and 25 for the classifier based 

on TMA2. Then, the separate test tumor model was classified using the number of PCs 

as determined independently from the test tumor model. This procedure was 

repeated for all tumor models. Combined, the total number of misclassified tumor 

models gave an estimate of the error rate of the classifier. 

Reproducibility tests 

The reproducibility of the method was evaluated by testing the classifiers using the 

alternate TMA. A classifier was trained on TMA1 and tested on TMA2 and vice versa. 

The same number of PCs was used as previously determined. The day-to-day 

variability was corrected using PCA-LDA as follows: each TMA data set was assigned a 

class. PCA-LDA was performed and the variance described by the resulting 

discriminant function was excluded from both data sets. The corrected data sets were 

used for the reproducibility tests.   
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3.3 Results and discussion 

Predictions 

The classifier based on TMA1 correctly predicted the treatment response for 17 out of 

22 tumors, as determined by double cross-validation (Table 3.2). The classification 

model based on TMA2 had a classification accuracy of 13 out of 22 tumor models, of 

which 11 were also correctly classified based on the TMA1 classifier. The tissue core 

spectra classification scores for the cross-validation of TMA1 and TMA2 can be found 

in Figure 3.4. The correlation between the two models was quantified by calculating 

the correlation coefficients of the resulting loading plots and the average discriminant 

score per tumor model. The correlation coefficients were 0.73 and 0.82, respectively, 

indicating the similarity between the two models. Figure 3.5a shows the PCA-LDA 

loading plots of the TMA1 and TMA2 classifiers colored according to the extent of 

peptide peak contributions to the models. The images that depict the spatial 

distribution of exemplary peptide peaks with high loadings in both models are shown 

in Figure 3.5b. 

Table 3.2 Classification results for the double cross-validations and the reproducibility tests 
using the alternate TMA as training set. 

Data set  Cross-validation  Reproducibility test 

TMA1 Tumor model 17/22 (77%) 15/22 (68%) 

 Tissue core 78/121 (64%) 76/121 (63%) 

TMA2 Tumor model 13/22 (59%) 18/22 (82%) 

 Tissue core 127/180  (71%) 125/180  (69%) 

 
Duplicate measurements of consecutive TMA sections resulted in very similar 

classification scores for each tumor model in the cross-validation (data not shown). 

Thus, the difference between the performances of the classifiers might be due to the 

different composition of the tissue microarrays of TMA1 and TMA2; only 40% of the 

tissue cores of TMA2 originated from the same tissue pieces as the tissue cores of 

TMA1. The remaining cores originated from different tumor pieces of the same PDX 

models. 
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Figure 3.4 Box plots for the cross-validation of TMA1 and TMA2. The classification 
(discriminant function 1) scores are shown for the responder models (yellow) and the non-
responder models (red). The classifier was constructed using the average core spectra from 21 
tumors (training set), followed by classification of the spectra from the 22nd tumor (test set). 
Responder spectra are assigned positive values and non-responder spectra are assigned 
negative values in the classification models. The box plots represent the lower quartile, median 
(stripe), mean (dot) and upper quartile of the rescaled classification scores. 

 



 

 

 
 

Figure 3.5 (a) PCA-LDA scaled loading plots of TMA1 and TMA2 colored as a function of variable (peptide peak) contribution in 

the projection. Scaling is applied by multiplying with the standard deviation of the original variables. (b) Selected ion images of 

variables with high loadings. 
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Projection of the predictions on the pixel level 

The results can be visualized as a class image, because spatial information is retained 

and remains associated with the spectra. The classification score for each pixel is 

plotted using a color code. Figure 3.6b shows the classification images for TMA1 and 

TMA2. The observed similarity of the scores for each tissue core gives an indication of 

the stability of the classifier. Tumor cores with ambiguous classification scores on the 

core level typically exhibit a mixture of yellow and red pixels, indicative for the 

heterogeneity of the tissue. H&E stained adjacent sections from the entire TMAs can 

be found in Figure 3.2. 

Comparison of the classifiers 

On the tissue core level 

The reproducibility of the method was evaluated by testing the classifiers, which were 

both based on all 22 PDX models, using TMA1 as training set and TMA2 for validation 

and vice versa. It should be noted here that the two TMAs were analyzed 

independently from each other at more than half a year interval. In addition, the tissue 

core layout of TMA2 was completely randomized as compared with TMA1 to avoid 

bias introduced by the position of the tissue cores in the TMA. The reproducibility 

tests revealed 4 wrong predictions out of 22 for the TMA1 classifier and 7 out of 22 for 

the TMA2 classifier (Table 3.2). These results can be explained by the performance of 

the classifiers: 8 out of the 11 misclassifications in the reproducibility tests were also 

misclassified in the cross-validations. This means that these tumor models are not 

well described by the classifiers. It should be noted that the tumor models were 

assigned to two discrete classes only for the purpose of classification. It was expected 

that the intermediate response PDX models would be more difficult to classify than 

the ‘good response’ or ‘no response’ PDX models. Unsurprisingly, the four most often 

misclassified tumor models were models with an intermediate experimental response, 

that is, ‘progression’ or ‘stable disease’. Figure 3.7 shows the number of misclassi-

fications per tumor model. 

One would expect that variation between different tumors from the same PDX 

model might result in a poorer performance of the classifiers. However, a similar 

percentage of misclassifications was found for duplicate cores from the same tumor 

piece as for cores from different tumors of the same PDX model. 
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Figure 3.6 Classification results for TMA1 and TMA2 on the pixel level. The classification score 
for each spectrum is projected on its pixel location. (a) Schematic representation of the TMAs 
with the responders (yellow) and non-responders (red). (b) Cross-validation results. A clear 
difference between the responders and non-responders is observed. (c) Reproducibility test 
results for TMA1 and TMA2 on the pixel level. The TMA1 classifier was used to test the spectra 
from TMA2 and vice versa. Overall agreement between the schematic representation of the 
tissue microarrays and the reproducibility test results is observed. Also mixed color tissue cores 
are present. These cores show a heterogeneous classification: responder (yellow) pixels and 
non-responder (red) pixels are observed within one core. 

A duplicate tissue microarray for TMA1 was measured, at a year interval, to further 

test the reproducibility of the method. This new data set is predicted, using the 

classifier based on TMA1, with three misclassifications (8 of the 56 cores were 

misclassified). In line with our previous findings, those three tumor models were 

already determined to not fit well in the classification model based on TMA1. 

Proteomic differences between the duplicate tissue microarray and TMA1 cannot be 

excluded because the duplicate originated from another part of the TMA block. 
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Figure 3.7 The total number of misclassifications per PDX model. For each PDX model, the 
misclassifications of the cross-validations and the reproducibility tests are summed. The four 
most often misclassified models (no. 12, 17, 20 and 23) had all shown an intermediate response 
phenotype in the treatment response experiments. 

On the pixel level 

Figure 3.6c shows the classification maps for the reproducibility tests. The 

reproducibility test predictions are overall in agreement with the treatment responses. 

Similar predictions on the pixel level are observed for most tissue cores. However, 

also some heterogeneous predictions for single tissue cores are present, represented 

by mixed colors in the class images. 

The extent of the observed heterogeneity in predictions was quantified as follows: 

for each PDX model the percentage of correctly classified pixels was determined, and 

this percentage was averaged over all data sets. Overall, 11 models show limited 

variation in classification score, defined as >70% or <30% correctly classified pixels. 

The other models show a larger spread in classification scores. MALDI-MSI spectra are 

known to exhibit variability due to technical issues, for example noise, the probing of 

mixtures of cells at the used spatial resolution and matrix preparation effects110; 

therefore improved reliability of classification can be obtained at the core or tumor 

level. A higher percentage of tissue cores with mixed prediction scores are present in 

TMA2 than in TMA1, reflecting the poorer separation achieved by the classifier based 

on TMA2. One would expect, from a histological perspective, that biomolecular 

heterogeneity gives rise to spectra with high variance. This heterogeneity might 
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contribute to the observed distribution of classification scores. The classifiers could be 

tested on larger, homogeneous tissue sections to determine to which extent the 

spread in classification scores is caused by real tissue heterogeneity and not by 

technical variability. 

In general, technical and biological variability between experiments limited the 

classification accuracies that we could obtain, especially because the study was based 

on a small number of tumors. The small sample set was a reason for using LDA instead 

of a more complicated model with multiple free parameters. For example, genetic 

algorithms would not be very useful, because they are prone to overfitting. An 

advantage of PCA-LDA is the possibility to evaluate the contribution of individual 

variables to the model. One would expect that different tumor classes have different 

peptide profiles that show up in the measurements. A follow-up study with clinical 

samples is required to externally validate these results. Moreover, the statistical 

approach might benefit from improved feature extraction. It is assumed in PCA-based 

feature extraction, as previously mentioned, that treatment response is one of the 

main sources of variation in the data. However, variance due to small differences 

between the treatment response classes might be poorly described by the PCs. These 

subtle changes, as for example differences in proteomic content in this study, can 

provide valuable information. 

Taking into account tissue heterogeneity 

All results shown so far have been obtained with the spectra from regions with high 

tumor cell content. However, it is generally accepted that the tumor 

microenvironment has an impact on treatment response111. New classifiers were built 

based on TMA1 and TMA2 using all spectra per core. Highly similar classification 

accuracies were obtained as compared to the accuracies previously reported. The new 

classifiers based on TMA1 and TMA2 correctly predicted the treatment response for 

17 out of 22 and 14 out of 22 tumors, respectively. Interestingly, the reproducibility 

was increased. In particular, the classifier based on TMA2 showed a higher 

reproducibility (~20% higher). Histological analysis showed that the tumor cell 

content was on average the same in both treatment response classes (data not shown); 

therefore an effect caused by an uneven distribution of tumor tissue can be excluded. 

Although it is difficult to find a biological interpretation of this result due to the ‘black 

box’ nature of the experiment, it is clear that the included heterogeneity has a positive 

impact on the classification in this study. 
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3.4 Conclusions 

In this chapter an approach is presented for the prediction of treatment response of 

PDX models of TNBC on the basis of MALDI-MSI data of TMAs. The results show its 

potential as a tool to study and predict treatment response in a high-throughput way; 

hundreds of cores can be analyzed in a single measurement. In addition, the method 

described here permits the classification of treatment response with direct correlation 

to histologically defined regions of interest. We have described how multiple tumors 

from the same PDX model could be used to assess the reproducibility of the method, 

showing both technical and biological variability. Further development of multivariate 

statistical approaches will bring MSI closer to clinical application. 
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Predicting head and neck cancer metastasis 

and disease-specific survival  

from MALDI-MSI data: feasible or not? 
 

 

The presence of lymph node metastasis is a major predictor for prognosis in head and 

neck cancer. However, with current diagnostic imaging techniques around 30% of lymph 

node metastases are not detected. Here, we investigate whether lymph node metastasis 

and disease-specific survival can be predicted from matrix-assisted laser 

desorption/ionization mass spectrometry imaging (MALDI-MSI) data. We perform 

MALDI-MSI measurements on tissue microarrays (TMAs) that contain 240 primary 

tumor samples. 

We describe how MALDI-MSI spectra have been acquired, and discuss how this data 

is processed so that it can be used in five different classifiers. We do not observe any 

predictive power for lymph node metastasis; for disease-specific survival some of the 

classifiers show a small predictive power. We demonstrate that our method is sensitive 

to intensity differences of 50% in typical peptide peaks. The observed broad peak 

distributions make it difficult to detect differences between the classes. 

With MALDI-MSI a large number of biomolecules can be studied simultaneously 

from hundreds of samples, with spatially resolved profiles. This makes MALDI-MSI a 

potentially attractive technique for biomarker discovery. There are drawbacks however: 

when a large number of biomolecules is measured, it can be hard to discern signal from 

noise. Spectra can also be hard to reproduce. For the formalin-fixed paraffin-embedded 

(FFPE) tissue that was used in this study, these drawbacks hampered biomarker 

discovery - we expected to find only small differences between the classes, in line with 

previous gene expression studies. Future efforts to improve the spectral quality of 

MALDI-MSI on FFPE tissue would therefore be valuable.  
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4.1 Introduction 

For the treatment of cancer an accurate prediction of the course of disease can be used 

to provide tailored treatment. However, in many cases no means exist to predict 

disease progression, or the existing methods lack sensitivity. Biomarker discovery 

aims to find measurable indicators of disease state. These indicators can then be used 

to assist in diagnosis, predict disease progression or aid in treatment decisions. With 

matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), 

biomolecules such as proteins, peptides, lipids and metabolites can be studied directly 

from tissue sections. Up to thousands of biomolecular species can be studied 

simultaneously. Tissues with different disease states can be compared to find 

differences in the expression of biomolecules. In this way, biomarkers or biomarker 

patterns might be identified that are associated with specific disease states. 

For the discovery of biomarkers, a study should fulfill several requirements26, 112. 

First of all, data on the clinical parameter of interest, such as the survival status of the 

patient, should be available for each patient sample. Secondly, a sample set is needed 

that is well-matched, which means that the classes or groups should contain a similar 

distribution of patients. For example, an unequal distribution of males and females 

could lead to the discovery of `false' biomarkers that are based on the gender of the 

patient. Furthermore, the sample set should also be sufficiently large to account for 

expected biological variability. 

In recent years it has become possible to study so-called tissue microarray (TMA) 

samples with MALDI-MSI. These samples consist of arrays of small tissue pieces from 

different patients. Using TMAs, one can measure a large sample set under highly 

similar experimental conditions, and correlate the acquired data with clinical data. 

These properties make TMAs well suited for biomarker discovery studies. Up to a 

thousand patient samples per study can now be analyzed in a single experiment113. 

There have been several studies that correlate MALDI-MSI data with disease 

progression78, 114-119. In 113, 120, TMAs with samples from more than 100 patients were 

used. A variety of statistical methods is employed in these studies. Typically, the first 

step is to select features (m/z values) using for example a univariate statistical test or 

Principal Component Analysis (PCA). There are several ways to investigate the 

predictive power of the selected features. Perhaps the simplest way is to correlate 

individual features to the parameter of interest113, 120. It is also possible to combine 

features to increase their predictive power, for example by Hierarchical Clustering114, 
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116, 119. Alternatively, a classifier can be trained to predict the parameter of interest 

from the features114, 115, 118. Regardless of the approach chosen, the number of features 

associated with a prognostic parameter is typically less than 20. There is always the 

danger of overfitting in these high-dimensional data sets. Techniques such as cross-

validation can reduce this, and in some studies independent validation of the 

identified proteins (typically not all discriminatory m/z values) is performed by 

immunohistochemistry. 

Head and neck cancer is the world’s sixth most common cancer. The tumors are 

biologically highly heterogeneous. Despite advances in diagnostics and treatment 

strategies, survival rates have not improved over the last decades and remain poor, 

with a 5-year survival of approximately 50%121. The presence of lymph node 

metastasis at the time of diagnosis is a major predictor for prognosis. Unfortunately, 

current diagnostic imaging techniques lack sensitivity. In around 30% of patients 

existing lymph node metastases are not detected. Depending on the chosen treatment 

strategy, this results in a large number of patients receiving over- or undertreatment. 

Tumor profiling with biomarkers has shown promising results122, 123. 

A recently validated gene expression profile accurately predicted the absence of 

nodal metastasis in 89% of the patients. However, the use of this gene profile would 

lead to a large number of patients undergoing unneccesary treatment124. Also MS-

based proteomic methods have been applied to identify markers associated with 

tumor aggressiveness and metastasis in oral cancer. Polachini et al. found 155 

differentially expressed proteins favoring metastasis125. More recently, a proteomic 

analysis by Harris et al. revealed 72 peptide features associated with disease-specific 

death, metastasis and recurrence126. However, to our knowledge no proteomic profile 

with predictive capability has been generated yet. 

Here, we investigate whether disease-specific survival and lymph node metastasis 

can be predicted from MALDI-MSI data of head and neck cancer tumors. First, the 

sample preparation and measurement technique are discussed, then we describe the 

data processing and classification approach. After the results have been presented, we 

discuss some of the challenges in biomarker discovery with MALDI-MSI. 
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4.2 Methods 

Patient samples 

For this study, 240 patient samples were available: 212 cases of oral squamous cell 

carcinoma (OSCC) and 28 cases of oropharyngeal squamous cell carcinoma (OPSCC). 

These samples came from patients with histologically proven oral or oropharyngeal 

squamous cell carcinoma that underwent surgery between 1996 and 2005 at the 

University Medical Center Utrecht in The Netherlands. Patients diagnosed with syn-

chronous primary tumors or previous malignancies in the head and neck region were 

not included in this cohort127. 

Table 4.1 The 178 patient samples used in this study were assigned to two binary classes, one 
for lymph node metastasis and one for disease-specific survival. 

Class description Yes No 

Lymph node metastasis 75 103 
Disease-specific survival 115 63 

 

In our study, we use two TMAs that contain tissue cores excised from patient samples. 

Per patient, three cores (0.6 mm in diameter) of the central part of the primary tumor 

were present, see Figure 4.1b. In Table 4.1, the number of patients which showed 

lymph node metastasis or disease-specific survival is listed. Negative disease-specific 

survival implies recurrence or death due to disease within the 5-year follow-up period, 

which occurred in 63 of the 178 patients. Note that not all 240 patients are included in 

this table, because some of them are filtered out during the pre-processing of the data. 

Sample preparation 

The TMAs contain formalin-fixed paraffin-embedded (FFPE) tissue. This tissue is 

conserved by dehydration and cross-linking of the proteins with formalin. After 

formalin fixation, the tissue is embedded in paraffin to preserve tissue morphology 

and allow thin sectioning of the tissue. FFPE tissue is widely used for clinical 

applications, due to easy storage and handling. Most MALDI-MSI studies so far have 

used fresh frozen tissue instead of FFPE tissue. 
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Figure 4.1 Example of a head and neck cancer TMA (a) Unprocessed MALDI-MSI spectrum from 
a tissue core. Inset: Hematoxylin and eosin (H&E) stained tissue core with 80% tumor cells. (b) 
H&E stained TMA of 120 patients. (c) Selected ion image shows the distribution of a typical 
peptide peak. 

The TMAs were prepared for MALDI-MSI analysis as previously described18. We 

summarize the important steps below. First, serial 5 µm tick tissue sections were cut 

from the TMA blocks and mounted onto conductive indium tin oxide (ITO) coated 

glass slides (Delta Technologies, USA). Paraffin was removed using xylene washes 

(twice, 5 min). Paraffin needs to be removed, as it causes ion suppression during mass 

spectrometric analysis. 
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The goal of the next steps in the sample preparation is to make the proteins amenable 

to MSI analysis. First, rehydration is performed using graded ethanol washes (100%, 

100%, 95%, 75% and 30%, all 5 min) and water washes (twice, 3 min). Then, (part of) 

the cross-linking is reversed (most likely through heat-induced hydrolysis128) by 

incubation of the sample in a buffer at high temperature. The samples were incubated 

at 95 °C in a 10 mM Tris buffer pH 9 for 20 minutes, and allowed to cool down to room 

temperature before briefly rinsing them with water. Afterwards, the samples were 

dried in a desiccator. 

Trypsin was dissolved in 50 mM ammoniumbicarbonate plus 25 µM 

octylglucoside at a final concentration of 0.05 µg/µL. On-tissue digestion was 

performed using the Suncollect automatic sprayer (SunChrom, Germany). Eight layers 

were applied with a flow rate of 7.5 µL/min. The quick movement of the localized 

spray over the tissue ensures that the spatial information is retained. The samples 

were incubated at 37 °C overnight in a humid environment (50% methanol in 

deionized water). Proteins in FFPE tissue are typically digested with trypsin to free 

them from remaining cross-links and aggregation which hinder their detection. 

A matrix solution of 5 mg/mL alpha-cyano-4-hydroxycinnamic acid (CHCA) in 1:1 

ACN:H2O with 0.1% trifluoroacetic acid was used. Matrix was applied with the 

Suncollect sprayer. Eight successive coats were applied with an increasing flow rate of 

7.5-20 µL/min. 

MALDI-MSI measurements 

The experiments were performed with a MALDI-QTOF instrument (Synapt G2Si HDMS, 

Waters, UK) in positive mode and an m/z range of 200-3500. Spectra were acquired 

with a stage step size of 100 µm and a laser frequency of 1000 Hz, with the 

quadrupole set to have optimal transmission in the peptide region of the mass 

spectrum (above m/z 900 for 90% of the scan time). The instrument was operated in 

sensitivity mode during all experiments, and on average 34 spatially resolved spectra 

were recorded for each core. 

MALDI-MSI spectra of FFPE tissue consist mainly of tryptic peptide and matrix 

peaks. An exemplary unprocessed mass spectrum can be found in Figure 4.1. MALDI-

MSI studies of TMAs report the detection of around 500 peptide peaks94, 129. This is in 

line with our observation of on average 700 tissue-related peaks per patient in the 

range of m/z 700-3500. 
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As was previously observed for FFPE tissue54, the baseline of the spectrum has a hill 

shape. This feature becomes more pronounced after peak-picking of the spectra, see 

the next section and Figure 4.2a. The elevated baseline is most likely caused by the 

rich mixture of molecules that is desorbed and ionized from the digested tissue 

surface. Formalin fixation-induced adducts might further increase the number of 

different ionized species130. Unresolved peaks lead to a loss in spectral resolution and 

a decrease in signal-to-noise ratio. A shorter digestion time of two hours did not 

improve the quality of the spectra. Replacing the Tris buffer (pH 9) with an acidic 

buffer (10 mM citric acid at pH 6)65, did also not improve the signal-to-noise ratio. 

The samples were collected over a period of ten years. When comparing older 

with younger samples, there was generally a decrease of peak intensity in the mass 

region above m/z 1300 and an increase in peak intensity below m/z 1300. Because the 

samples were ordered by their age on the TMAs, we cannot exclude that this 

difference was caused by the sample preparation or a slight bias in the measurements. 

Compared to the spectral variability of the samples, the effect was relatively minor. 

Pre-processing of the spectra 

After MALDI-MSI analysis, the samples were stained with hematoxylin and eosin (H&E) 

using a standard protocol, see Figure 4.1. The percentage of tumor cells per tissue core 

was determined by a dedicated head and neck pathologist. To reduce the biological 

variability in our data, cores with a high percentage of tumor stroma or muscle tissue 

were excluded. Only tissue cores with more than 50% tumor cells were used. 

Furthermore, low intensity tissue cores (less than 30% of average core intensity) 

were also excluded. After this procedure there were still spectra from 178 patients, 

with an average of 80 spectra per patient. Clinical follow-up data were available for all 

patients (see Appendix). 

Spectra from the cores were extracted for data processing and subsequent 

statistical analysis using an in-house developed software tool. This tool co-registers 

the MSI data and the H&E scan of the same sample to accurately extract 'on-tissue' 

spectra. The extracted spectra were subjected to peak detection using the PEAPI 

algorithm106. 
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Classification procedure 

Below, our approach for tumor classification is described. First, the spectra that we 

have obtained (see the previous section) are further processed. Then a `feature 

selection' step is performed, because the classifiers that we use cannot operate on 

high-dimensional data. These classifiers are briefly described, as well as the (standard) 

cross-validation procedure. For the data processing and classification, we have used 

routines from SciPy131 and Scikit-learn132. The numerical infrastructure provided by 

these Python libraries allowed us to quickly test different feature selection methods 

and classifiers. 

Processing the spectra 

To improve the sensitivity of our classification approach, several operations are 

performed on the measured spectra: 

1) Combine the measurements per patient (by summation) 

2) Remove matrix-related peaks 

3) Remove the baseline per patient 

4) Normalize the spectra 

The goal of these steps, which are discussed below, is to reduce the variance that is 

not caused by protein-differences. 

Combining measurements 

For each patient, we have performed measurements on all available tumor cores 

(maximum three), and for each core, spectra were obtained at multiple locations or 

pixels. After peak-picking, we combine the measurements per patient by summation. 

In Figure 4.2a, an example of such a spectrum is shown. 

Removing matrix-related peaks 

The m/z values that we remove are indicated by red dots in Figure 4.2a. All peaks 

below m/z = 710 are filtered out, because most of them do not correspond to peptides. 

Peaks related to the matrix are located at the bottom of the spectrum. To remove them, 

we apply the following procedure twice: 
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1) Compute the averaged spectrum over all the patients �̅ 
2) Apply a second order Savitzky-Golay filter with a width of 125 m/z values to �̅ to 

get ��̅ 

3) Remove peaks for which �̅ < 0.75 ��̅ 

Baseline removal 

The spectra have different baselines, as can be seen in Figure 4.2b. We perform 

baseline correction in the following way. For each patient, we first estimate the 

baseline with a median filter. Such a filter computes the median over a window of 

width w; we use w = 125 m/z values. This estimate of the baseline is still rather noisy, 

so we smooth it with a Savitzky-Golay filter of order two and the same width. The 

smoothed baseline is then subtracted from the data, see Figure 4.3a. Note that some of 

the peaks are located below the baseline, and will therefore become negative. 

 

Figure 4.2 (a) Example of a peak-picked spectrum, obtained by combining data from all tumor 
cores of the same patient. The m/z values indicated by red dots are filtered out during the pre-
processing. (b) Three filtered spectra from different patients. 

Normalizing the total ion count 

There are still significant differences in the total intensity of the spectra at this point. 

As these differences are mostly related to sample preparation and experimental 

conditions, they are filtered out by normalizing the spectra by their total ion count. In 

Figure 4.3b, examples of the resulting spectra are shown. 



Chapter 4 
 
 

 
 
58 

 

Figure 4.3 (a) Example of a peak-picked spectrum with its baseline (black solid curve). The 
spectrum after baseline subtraction is also shown (green spectrum). (b) Peak-picked spectra of 
three patients, after pre-processing (zoom). Peak-picked spectra are shown as continuous 
graphs for better readability. 

Feature selection 

Most classification methods can only be trained on data for which D < N: the 

dimension of an observation should be (significantly) smaller than number of 

observations. We therefore have to reduce the dimensionality of our data. There are 

several ways to do this, see for example the discussion by Hilario et al.22. 

We use univariate feature selection, which means that the features are ranked 

individually, without taking into account the possibly complex relations between them. 

Features that are discriminatory only in combination with other features are therefore 

unlikely to be selected, which makes univariate feature selection unsuitable for 

detecting patterns involving small changes in a large number of features. However, 

here we assume that class differences are expressed in a limited number of features. 

Even if these features are correlated, there will often be significant univariate 

differences. After such differences have been detected, one can use a suitable classifier 

to search for complex patterns in the selected features. Another argument for using a 

univariate approach is that with more multivariate methods, overfitting is more likely 

to occur. The reason for this is that the number of possible patterns rapidly increases 

with the complexity of the pattern. For example, in a data set with 500 features, there 

are already about 2.6 x 1011 ways to select five of them. The problem of overfitting is 

especially relevant because we have a limited sample size and data with large intrinsic 

variability. 
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Given a set of training data for two classes, the features (peaks) are ranked according 

to two tests: the Wilcoxon rank-sum test and the Kolmogorov-Smirnov test. We then 

retain the features with the smallest p-values. These p-values indicate the probability 

of getting a difference at least as big as the observed difference, assuming that the null 

hypothesis is true. The Wilcoxon rank-sum test is closely related to the AUC (area-

under-curve) statistic for ROC (receiver operator characteristic) curves. Its null-

hypothesis is that P(x > y) = P(y > x) = 1/2 for samples x and y taken from two classes. 

The Kolmogorov-Smirnov test is based on the distance between the estimated 

cumulative distribution functions of x and y. Its null hypothesis is that these 

distribution functions are the same. This makes the Kolmogorov-Smirnov test one of 

the most generally applicable statistical tests. 

One of the classifiers that we will use is a Support Vector Machine (SVM). For 

SVMs, normalization of the data is important, and therefore the selected features are 

normalized to the range [0, 1] when they are used with the SVM. 

Classifiers used 

We use five different classifiers, as implemented in the Scikit-Learn library132: 

• LDA: Linear Discriminant Analysis 

• QDA: Quadratic Discriminant Analysis 

• NBC: Naive Bayes Classifier 

• DTC: Decision Tree Classifier, we use a maximum depth of three 

• SVM: Support Vector Machine, the parameters C and γ were both set to one 

These classifiers were selected for a number of reasons. LDA is one of the canonical 

classifiers, which should work well for linearly separable data. QDA is a bit more 

general and allows for a `quadratic' decision boundary between classes. The Naive 

Bayes Classifier works well for data in which each single feature independently has 

(some) predictive power, whereas the Decision Tree classifier can handle complex 

relations between the features. Support Vector Machines are also quite flexible, and 

can be used to find complicated decision boundaries between the classes. 

Cross-validation procedure 

To test the performance of the different classifiers, we use so-called k-fold cross-

validation, with k = 10. This means that the data is randomly partitioned into k sub-
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samples of nearly equal size. Then the training and testing of the classifiers is 

performed k times. Each time one subsample is used for testing and the rest of the 

data for feature selection and training. Data from a patient is thus either used for 

testing or for training, but never for both. After cross-validation, each patient has been 

part of the test-group exactly once, so a full set of predicted class labels is obtained. 

4.3 Results 

To investigate whether we can predict the occurrence of lymph node metastasis or 

disease-specific survival from MALDI-MSI spectra, the patients were assigned to 

binary classes. The class counts can be found in Table 4.1. 

After the cross-validation procedure, the predicted classes are compared with the 

actual classes. Then a confusion matrix M can be constructed, indicating the number of 

true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN): 
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We express the accuracy of the classifiers as a single number, for which we use 

Matthews correlation coefficient (MCC), also known as the φ coefficient: 

 

��� = 	
	x		� − �
	x	��
��	
 + �
��	
 + ����	� + �
��	� + ���

 

 

This coefficient lies between -1 and 1. A value of 1 indicates that all predictions are 

correct, 0 means that there is no predictive power, and -1 means that all predictions 

are wrong. If there are for example two equal size classes, for both of which 75% of 

the predictions is correct, then we have MCC = 0.5. 

Results with artificially modified data 

To get an idea of the sensitivity of the classification approach, we have performed 

tests with modified data. One representative peak with an m/z value of 1325.7 was 

selected. This peak was increased with a certain percentage in one of the classes after 

pre-processing, but before feature selection (see ‘The complexity of discriminatory 
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patterns’). (If we would keep the baseline before increasing the peaks, then a much 

smaller increase would be needed.) 

Classification results for different increases are shown in Figure 4.4a, using the 

LDA classifier and five selected features. The other classifiers give quite similar results, 

which are therefore not shown. Data from 20 runs with randomized class labels was 

used to generate this figure. The feature selection methods perform about the same. 

With an increase of about 50%, the MCC score is about 0.2 to 0.3, and it increases to 

about 0.4 for an increase of 80%. Using the method and data presented in this chapter, 

we should thus be able to detect differences of about 50% in the intensity of typical 

peaks. 

 

Figure 4.4 (a) Test of the feature selection methods (Wilcoxon rank-sum test and Kolmogorov-
Smirnov test) using artificial data. A typical peptide peak at m/z 1325.7 has been increased by a 
certain percentage in one of the classes. The error bars indicate plus and minus one standard 
deviation. Data was collected from 20 runs with randomized class labels. (b) Histogram of the 
peptide peak at m/z 1325.7 after processing. 

These tests with modified data give an indication of the quality of the spectra.  

Suppose that an m/z value has a different distribution in classes A and B. How well we 

are able to discriminate between A and B depends on the overlap between the 

distributions. For a narrow distribution, a small shift in the mean can already result in 

a small overlap, but for a broader distribution a much larger shift is required. In 

Figure 4.4b, the intensity distribution for the m/z value of 1325.7 is shown. This is 

clearly a quite broad distribution, which explains why we have to increase the 

intensity of this peak with 80% to obtain an MCC score of 0.4. The broad distribution 

makes it harder to detect differences between the classes. Ideally, peaks would have a 
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much narrower distribution. A more quantitative way of saying this is that peaks 

should have a small relative standard deviation (standard deviation over mean), of 

course after baseline removal. 

The error bars in Figure 4.4a indicate the standard deviation in the MCC score 

using randomized class labels. When there is no increase (0%), this standard de-

viation is about 0.1. This means that a classifier on the real data should show MCC 

scores significantly larger than 0.1 in order to be successful. 

 

Figure 4.5 Classification results for lymph node metastasis (LNM, a,b) and disease-specific 
survival (DSS, c,d). The left hand figures show results for feature selection with the Wilcoxon 
rank-sum test. The right hand figures show results using the Kolmogorov-Smirnov test. 



Predicting metastasis and disease-specific survival 
 
 

 
 

63 

 

Figure 4.6 The classes visualized according to two discriminatory m/z values for disease-
specific survival. 

Classification of lymph node metastasis 

In Figure 4.5a,b classification results are presented for lymph node metastasis. The 

MCC scores have a maximum of about 0.1, which means that no significant predictive 

power is observed for any classifier, regardless of the feature selection method and 

the number of features. 

Classification of disease-specific survival 

In Figure 4.5c,d classification results are presented for disease-specific survival. With 

the Wilcoxon rank-sum test, the best MCC scores are about 0.1, which approximately 

equals one standard deviation. With the Kolmogorov-Smirnov test, the results look 

significantly better. Using five features, the two most frequently selected m/z values 

are: 913.5 (100%) and 2195.2 (80%). The decision tree classifier gives an MCC score 

of 0.3, and the confusion matrix is 

 

���� =	�	90				31		25				32	 

 

The best MCC scores for disease-specific survival correspond to two or three standard 

deviations, which could indicate that there is some predictive power in the spectra. 

However, we should emphasize that our results are not significant enough to really 

make such a claim. This is also illustrated by Figure 4.6, in which the two most 

discriminatory features are used to display samples from the two classes. No clear 
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pattern seems to be present, and both peaks are often below the baseline (indicated 

by negative values). 

A small predictive power can appear to be present for a number of reasons, for 

example: 

• There can be patterns in the data that are just random fluctuations. The 

probability of finding such a pattern grows with the size of the `search'. Here we 

consider five classifiers, one to fifteen features, two feature selection methods and 

two classes, which amounts to 300 cases. On the other hand, positive MCC scores 

are observed for most classifiers, and the scores are not very sensitive to the 

number of features. 

• There can be small differences between the patient distributions in the classes. 

• An uneven distribution of the samples over the tissue microarray or 

inhomogeneities in the sample preparation can lead to `artificial' differences 

between the classes. 

These causes can only be ruled out by independent validation studies with different 

samples. 

4.4 Discussion 

Challenges in MALDI-MSI based biomarker discovery 

Why are we not able to (clearly) predict metastasis or disease-specific survival from 

the MALDI-MSI spectra? Are there simply no discriminating features in the tissue, or 

have we just been unable to detect them? Below, we discuss some of the challenges in 

MALDI-MSI based biomarker discovery, which could explain our result. We also 

discuss how our results could be improved in the future. 

A large, well-matched sample set is required 

For biomarker discovery, one needs a sample set that is both well-matched (to 

prevent finding false biomarkers) and large (to account for the intrinsic heterogeneity 

of patient samples). The signal-to-noise ratio increases with the size of the sample set, 

and has to be large enough so that the biomarker can be detected. Unfortunately, one 
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can only tell how large a sample set has to be after a biomarker has actually been 

discovered. 

For the study we perform here, there is an additional complication: cancer tissue 

is quite heterogeneous. It has been shown that interaction of tumor cells with the 

microenvironment, such as stroma and immune response factors, is important in the 

progression of the disease133. Moreover, comprehensive analyses of cancer genomes 

have found a great deal of heterogeneity within cancers of a single type, and even 

within one tumor112. These heterogeneous cell populations might differ in malignancy. 

In this regard, MALDI-MSI has one advantage: histology-directed analysis is possible, 

using for example tissue regions selected by a pathologist. Only a small tissue region 

per patient is selected for use in the TMAs used in this study. This small piece of tissue 

does not have to be representative for the tumor. 

Sample preparation and data acquisition 

For biomarker discovery with MALDI-MSI, we have the following requirements: 

• A large number of m/z values should be detected, to maximize the information 

gained about the tissue 

• Peaks should be detected with a high signal-to-noise ratio 

• Measurements have to be reproducible 

However, some of these requirements are competing. For example, the more analytes 

are desorbed from the tissue surface, the more they compete for ionization, 

hampering each others detection. In addition, the more m/z values are measured, the 

more peaks will overlap, reducing the signal-to-noise ratio. Small variations in the 

mixture of analytes, either tissue-based or introduced during the sample preparation 

(e.g. proteolytic digestion or matrix application), therefore greatly affect the 

reproducibility of the measurements. 

To improve reproducibility, analytes can be separated before mass spectrometric 

analysis. Chromatographic separation is not compatible with MSI, which requires 

preservation of analyte distribution in the tissue section. Instead, ion mobility 

separation can be used. Additionally, overlapping peaks can sometimes be separated 

with higher resolution measurements. 
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High-dimensionality of the data 

In many cases, MALDI-MSI data is high-dimensional. This means that D ≫ N, where D is 

the dimension of an observation (the number of m/z values) and N is the number of 

observations available (the number of samples). Classifying high-dimensional data 

poses some challenges, which is sometimes referred to as the high-dimensionality-

small-sample (HDSS) problem22. 

A simple example can demonstrate one of problems with high-dimensional data. 

Suppose we have a set of D+1 coins, which can be flipped by person A or person B. 

There is one special coin: if A flips it, it has chance β (> 0.5) of heads, and if B flips it, it 

has a chance β of tails. The other D coins are fair. Given a list of coin outcomes, we can 

tell whether person A or B flipped them with accuracy β, by looking at the special coin. 

Now suppose we have to build a classifier, without knowledge of the special coin, 

from N labeled observations (coin outcomes), N/2 from A and N/2 from B. If N = 80 

and β = 0.7, then the probability that a fair coin is at least as discriminating as the 

special one is about 0.56%. For different values of D (the number of fair coins) we can 

compute the probability that the special coin gives the best results on the training data. 

For D = 10, this probability is about 95%, for D = 100 it is 57% and for D = 1000 it is 

only 0.36%. 

When D is increased, we effectively add more noise to the observations, whereas 

the amount of signal stays the same, because there is just one special coin. This 

example demonstrates a fundamental problem: when the signal-to-noise ratio gets too 

low, a good classifier cannot be built. Note that no `smart' algorithm can help here, the 

only solution is to have more training data available. 

The complexity of discriminatory patterns 

In previous studies, it was found that single biomarkers usually have limited 

predictive power134, 135. The classifiers that we use can combine the information of 

several features in different, non-linear ways. However, the `right' features first have 

to be selected. Since we use a univariate feature selection method, the detection of 

biomarkers consisting of many features is unlikely, especially if univariate differences 

are small. 

There is a general problem in finding such biomarkers: since the number of 

possible patterns increases rapidly with the complexity of the pattern, large data sets 

are required to prevent overfitting. 
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Outlook 

The quality of the spectra is an important factor in biomarker discovery. Some 

parameters in the sample preparation can still be optimized, for example the tissue 

thickness or the digestion enzymes. A recent paper by Heijs et al. describes the use of 

Lys-C, Arg-C and r-Lys-N for the proteolytic digestion of fresh frozen tissue136. 

Compared to the use of trypsin, more high intensity m/z values were observed. This 

came, however, at the cost of the detection of fewer m/z values. 

We expected to find only small differences between the classes. A recently 

validated gene signature that can predict lymph node metastasis consists of no less 

than 732 probes124. No predictive power was observed for lymph node metastasis and 

only limited predictive power for disease-specific survival. No clear differences were 

detected between the classes on the level of the proteome, as probed by MALDI-MSI. A 

more in-depth analysis, for example by liquid chromatography MS, might be used to 

investigate changes in the low-abundant proteins. 

4.5 Conclusion 

We have investigated whether lymph node metastasis and disease-specific survival 

for head and neck cancer can be predicted from MALDI-MSI data. Measurements were 

performed on two tissue microarrays, which contained tumor cores from 240 patients. 

Our sample preparation and measurement technique have been described in the first 

part of the chapter. The processing of these data so that it could be used in different 

classifiers was described in the second part of the chapter. 

Using five classifiers and two feature selection methods, we did not observe 

predictive power for lymph node metastasis. For disease-specific survival, some of the 

classifiers showed a small predictive power. We have shown that our method is 

sensitive to intensity differences of 50% in typical peptide peaks, using artificially 

modified data. The proteomic differences associated with lymph node metastasis or 

disease-specific survival thus have to be smaller, if they exist. 
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Mass spectrometry imaging 

of the hypoxia marker pimonidazole 

in a breast tumor model 
 

 

Although tumor hypoxia is associated with tumor aggressiveness and resistance to 

cancer treatment, many details of hypoxia-induced changes in tumors remain to be 

elucidated. Mass spectrometry imaging (MSI) is a technique that is well suited to study 

the biomolecular composition of specific tissue regions, such as hypoxic tumor regions. 

Here, we investigate the use of pimonidazole as exogenous hypoxia marker for 

matrix-assisted laser desorption/ionization (MALDI) MSI. In hypoxic cells, pimonidazole 

is reduced and forms reactive products that bind to thiol groups in proteins, peptides and 

amino acids. We show that a reductively activated pimonidazole metabolite can be 

imaged by MALDI-MSI in a breast tumor xenograft model. Immunohistochemical 

detection of pimonidazole adducts on adjacent tissue sections confirmed that this 

metabolite is localized to hypoxic tissue regions.  

We used this metabolite to image hypoxic tissue regions and their associated lipid 

and small molecule distributions with MALDI-MSI. We identified a heterogeneous 

distribution of 1-methylnicotinamide and acetylcarnitine, which mostly co-localized with 

hypoxic tumor regions. 

As pimonidazole is a widely used immunohistochemical marker of tissue hypoxia, it 

is likely that the presented direct MALDI-MSI approach is also applicable to other tissues 

from pimonidazole-injected animals or humans.  
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5.1 Introduction 

Tumor hypoxia, caused by abnormal tumor vasculature, is associated with tumor 

aggressiveness and resistance to cancer treatment137. Tissue regions with a partial 

oxygen pressure (pO2) below 10 mmHg are typically considered hypoxic, but the 

degree of hypoxia can vary considerably inside and between different tumors138. 

Hypoxia is found in many solid tumors and triggers a complex response that involves 

many different molecular pathways. These pathways influence cellular processes such 

as apoptosis, angiogenesis, proliferation and anaerobic metabolism. Understanding 

the hypoxia-induced changes in tumors is essential for the development of more 

effective cancer treatment. This requires the development of innovative techniques 

that can image hypoxia and its associated biomolecular changes. 

Given the importance of hypoxia, many techniques have been developed for 

measuring tumor oxygenation. These techniques include direct pO2 measurement 

with polarographic oxygen electrodes or fiber optic probes, magnetic resonance and 

other imaging techniques137, 139. In recent years, endogenous markers such as hypoxia-

inducible factor 1 (HIF-1), carbonic anhydrase IX (CAIX), glucose transporter 1 

(GLUT1), C-X-C chemokine receptor type 4 (CXCR4), vascular endothelial growth 

factor (VEGF) and insulin-like growth factor 1 receptor (IGF1R) have been reported 

for hypoxia imaging137, 140. However, the expression of these markers is not directly 

linked to the oxygenation status of the tissue and they are therefore often referred to 

as hypoxia-related markers137. 

The exogenous 2-nitroimidazole hypoxia markers were originally designed as 

radiosensitizers, but the observation that they were activated and retained in viable 

hypoxic cells with an oxygen dependence similar to that of radioresistance led to the 

development of this class of molecules as hypoxia markers141-143. Several methods 

exist for the detection of 2-nitroimidazole adducts, including positron emission 

tomography (PET), single photon emission computed tomography (SPECT), magnetic 

resonance spectroscopy (MRS) and immunohistochemical assays144. Antibody-based 

detection methods have the advantage that hypoxia can be imaged on a cellular level. 

The spatial distribution of hypoxia as detected with antibodies recognizing 2-

nitroimidazoles can be compared with high spatial detail to other markers of tumor 

biology145, 146. A disadvantage of immunohistochemical assays is that they are targeted 

assays with limited multiplexing capability, hence only known targets can be studied 

and only a small number of proteins can be detected at the same time. 



MSI of the hypoxia marker pimonidazole 
 
 

 
 

71 

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) 

can image hundreds of analytes directly from tissue surfaces. It can visualize a wide 

variety of biomolecules, such as lipids, proteins, peptides and metabolites routinely at 

50-100 µm spatial resolution, but recent technical developments have shown that 

lipids and drug compounds can be imaged with a resolution of 5-10 µm147-149. These 

characteristics make MALDI-MSI well suited to study the biomolecular make-up of 

hypoxic tissue regions, provided that there is an easy way to discriminate hypoxic 

from normoxic tissue regions. 

Here we present a MALDI-MSI approach that combines the detection of the 2-

nitroimidazole hypoxia marker pimonidazole, and the multiplexing capabilities of this 

technique to image hypoxic regions and their associated biomolecules in a single 

experiment. 

Pimonidazole was shown to be a reliable marker of hypoxia and is approved for 

clinical use150, 151. Importantly, it has favorable chemical properties for mass spectral 

detection such as a slightly basic piperidine side chain. 

Pimonidazole is reduced only under hypoxic conditions to form reactive products 

that bind to cellular nucleophiles, especially thiol-containing proteins. Reductive 

activation is inhibited at pO2 >10 mmHg in solid tissue (half-maximal inhibition at ca. 

2 mmHg)152-154. Pimonidazole reduction depends upon nitroreductase activity; hence 

metabolically active cells are required for reductive metabolism of pimonidazole. 

Limited knowledge exists on the in vivo reaction products of pimonidazole155. Current 

knowledge is largely based on in vitro and simple in vivo experiments that were 

performed in the 1980’s143, 156-161. For these experiments a different 2-nitromidazole, 

misonidazole, was primarily used. 

In this chapter, we used MALDI-MSI to study pimonidazole and its metabolism in 

breast cancer xenograft tissue from pimonidazole-injected mice. We detected the 

unreacted pimonidazole compound and several pimonidazole metabolites. Accurate 

mass and product ion measurements with atmospheric pressure scanning microprobe 

MALDI (AP-SMALDI) MSI and accurate mass liquid chromatography (LC) MS 

experiments were performed to analyze tumor tissue from pimonidazole-injected 

mice in detail. Verification was performed by immunohistochemical detection of 

pimonidazole adducts on adjacent tissue sections. We show that one of the detected 

pimonidazole metabolites is well suited as marker of hypoxia in MALDI-MSI 
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experiments. We also present small molecules that co-localize with the hypoxic 

regions as detected by this pimonidazole metabolite. 

5.2 Materials and methods 

Chemicals and reagents 

We obtained alpha-((2-Nitroimidazol-1-yl)methyl)-1-piperidineethanol (pimonida-

zole), α-cyano-4-hydroxycinnamic acid (CHCA) and trifluoroacetic acid (TFA) from 

Sigma-Aldrich (Steinheim, Germany). Acetonitrile (ACN) and methanol (MeOH) were 

purchased from Biosolve (Valkenswaard, The Netherlands). Cresyl Violet was 

obtained from Thermo Scientific (cat# 40576, PA, USA). Ponceau S (cat# P3504), 

Mayer’s hematoxylin and eosin were obtained from Sigma-Aldrich (St. Louis, MO, USA). 

Paraformaldehyde was purchased from Santa Cruz Biotechnology (Dallas, TX, USA.). 

Other reagents used for immunostaining were purchased from EMD Millipore (MA, 

USA), unless stated otherwise. 

Preparation of breast tumors for stainings and MSI analysis 

Triple-negative MDA-MB-231 breast cancer cells, obtained from the American Type 

Culture Collection (ATCC), were orthotopically inoculated into the mammary fat pad 

of athymic nude mice. Tumors were grown to 6-8 mm in diameter within about 8 

weeks. 400 mg/kg of pimonidazole was injected intravenously into the tail vein. 

Pimonidazole, primary mouse anti-pimonidazole antibody conjugated with FITC, 

secondary rabbit anti-FITC antibody, and all immunohistochemical (IHC) staining 

reagents were purchased as a kit (HP2-100 Kit, Hypoxyprobe, Burlington, MA, USA). 

After 30 minutes, the mice were sacrificed, tumors were excised and embedded in 

gelatin. An equal mixture of Cresyl Violet and Ponceau S (0.5 mg/mL of each as final 

concentration in gelatin), were added as fiducial markers for spatial referencing91. The 

embedded tumors were frozen in liquid nitrogen and stored at -80 °C before 

sectioning. Four tumors were used in this chapter: three from pimonidazole-injected 

mice and one from an untreated control mouse. 

During cryosectioning, tumors were divided into about ten sets of cryosections. 

Four 100 µm thick sections were cut for each set and stored in eppendorf tubes. Then, 

seven 10 µm sections were cut per set. Adjacent sections were mounted on glass 

slides for hematoxylin and eosin (H&E) and IHC staining and on indium-tin oxide (ITO) 
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coated slides (Delta Technologies, Stillwater, MN, USA) for MSI analysis. All sections 

analyzed originated from tissues sets 6-9 as counted from the mouse body wall to the 

top of the tumor, except for the sections used for metabolite extraction which 

originated from throughout the tumor. All sections were stored at -80 °C until analysis. 

Hematoxylin and eosin (H&E) staining 

One frozen slide from each set was thawed and fixed with 4% paraformaldehyde for 

30 min, then washed with water. Fresh hematoxylin was applied on top of the tissue 

sections for 1 min. After washing with distilled water, tissue sections were stained 

with eosin for 1 min. The slides were then washed with water until there was minimal 

coloring visible on the gelatin area of the sections. The slides were then mounted with 

a cover glass using mounting medium (DAKO Faramount aqueous mounting medium, 

cat# S3025, Carpinteria, CA, USA) and photomicrographs were taken on a Nikon 

microscope equipped with a CCD camera. 

Immunohistochemical (IHC) staining for pimonidazole 

One tissue section from each set was thawed, fixed in 4% paraformaldehyde for 30 

min and washed three times with TBS/0.1% Tween-20. Peroxidase activity was 

quenched with 3% H2O2 for 10 min, and tissue sections were washed again three 

times with TBS/0.1% Tween-20. Non-specific binding was blocked with protein 

blocking reagent (cat# 20773, Millipore, Billerica, MA, USA) and rabbit serum, each for 

10 min. Tissue sections were rinsed three times with TBS/0.1% Tween-20. For 

staining, tissue sections were incubated with primary antibody (primary mouse anti-

pimonidazole antibody conjugated with FITC, HP2-100 Kit, Hypoxyprobe, Burlington, 

MA, USA) diluted to 1:75 with antibody dilution buffer (TBS/0.1% Tween-20) for 30 

min. Samples were washed five times with TBS/0.1% Tween-20, followed by in-

cubation with secondary antibody (secondary rabbit anti-FITC antibody, HP2-100 Kit, 

Hypoxyprobe, Burlington, MA, USA) diluted to 1:75 with antibody dilution buffer for 

30 min. Samples were washed five times with TBS/0.1% Tween-20. 3,3'-Diamino-

benzidine (DAB) staining was performed for 10 min (DAB Quanta, cat #TA-060-QHDX, 

Thermo Scientific). The reaction was stopped by washing with water. Samples were 

washed once with TBS/0.1% Tween-20. Counterstaining was per-formed with hema-

toxylin for 1 min. Finally, mounting medium was applied and a cover glass attached. 

Images were acquired using a Nikon microscope equipped with a CCD camera. 
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MALDI mass spectrometry 

CHCA matrix solution was prepared at a concentration of 10 mg/mL in 50% ACN 

(vol/vol) and 0.2% TFA in water. The pimonidazole standard solution was prepared 

by mixing a pimonidazole solution of 1 mg/mL in MeOH with CHCA matrix solution in 

a 1:1 ratio. The sample was spotted on a MALDI target plate at 0.5 µL per spot. We 

analyzed multiple breast tumor xenograft sections from three pimonidazole-injected 

mice and from one untreated control mouse. Tissue sections were dried prior to MSI 

analysis. CHCA matrix solution was sprayed onto the sections by a vibrational sprayer 

(ImagePrep, Bruker Daltonics, Bremen, Germany). 

MALDI mass spectrometric analyses were performed on a MALDI-QTOF 

instrument (Synapt HDMS, Waters, UK) in positive ion mode. Quadrupole 

transmission was optimized for detecting pimonidazole-derived ions. MS images were 

acquired with a laser step size of 100 µm and with a mass range set between m/z 75 

and 1000. Collision-induced dissociation was performed in the trap cell with a 

collision energy of 15-35 eV. Fragmentation spectra of pimonidazole-derived m/z 

223.2 and endogenous tissue species were collected using on-tissue MS/MS. 

Pimonidazole standard solution spots were used to acquire MS and MS/MS spectra of 

the compound. Pimonidazole was detectable down to 0.5 pmol (mass accuracy 100 

ppm). MALDI MS Images were generated using BioMap 3.8.0.4 software (Novartis, 

Basel, Switzerland) with Δm/z = ±0.02. 

AP-SMALDI mass spectrometry 

CHCA matrix solution was prepared at a concentration of 5 mg/mL CHCA in 50% ACN 

(vol/vol) and 0.2% TFA in water. Matrix solution was sprayed onto a dried tumor 

tissue section using a Suncollect sprayer (SunChrom, Friedrichsdorf, Germany). 

Experiments were performed using an atmospheric pressure scanning 

microprobe matrix-assisted laser desorption/ionization imaging source (AP-

SMALDI10, TransMIT, Giessen, Germany)162, coupled to an orbital trapping mass 

spectrometer (Q Exactive, Thermo Fisher Scientific, Bremen, Germany). MS and 

MS/MS data were acquired in positive ion mode. MS image size was 50 x 50 pixels, 

with a step size of 100 µm. Internal calibration was achieved using CHCA signals as 

lock masses. 

On-tissue MS/MS of m/z 223.2 was performed using higher-energy collisional 

dissociation (HCD) and a precursor ion isolation window of 1 Da. For HCD the 
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normalized collision energy was set to 65%. AP-SMALDI MS images were generated 

with the software package Mirion163 with Δm/z = ±0.004. Spectra were analyzed with 

XCalibur software (Thermo Scientific). 

LC-MS analysis of pimonidazole metabolites 

Several 100 µm-tick tumor tissue sections, from one pimonidazole-injected and one 

untreated mouse, that were adjacent to sections analyzed with MSI, were used for 

metabolite extraction. The following extraction protocol was used: 25 mg frozen 

tissue was placed in pre-cooled 1.5 mL tubes, and glass beads (1 mm diameter) and 

200 µL pre-cooled MeOH were added. Tissue samples were homogenized six times for 

10 s, using a mini-bead beater (Biospec, Bartlesville, OK, USA), with 20 s on ice in 

between the homogenization rounds to avoid heating of the samples. Next, the 

samples were centrifuged for 5 min at 10,000g at 4°C. Supernatants were transferred 

to new tubes and centrifuged again for 5 min at 20,000g at 4°C to remove remaining 

tissue debris. Samples were stored at -20°C until LC-MS analysis. A pimonidazole 

solution of 100 ng/mL in MeOH was used as control sample. 

High-performance liquid chromatography was performed on a Thermo Scientific 

Dionex Ultimate 3000 RSLC system equipped with an Accucore C18 column (100 mm 

x 2.1 mm, particle size 2.6 μm) at 40°C. The injection volume was 2 µL and separation 

was achieved using a 10 min gradient with a flow rate of 400 µL/min. Mobile phase A 

consisted of 10 mM ammonium acetate at pH 9.8. Mobile phase B consisted of ACN 

with 0.1% formic acid. This setup was connected to an Orbitrap Fusion instrument 

(Thermo Fisher Scientific, Bremen, Germany). This mass spectrometer was operated 

in positive ion mode with a scan range of m/z 80-300. Data analysis was performed 

with Xcalibur and Compound Discoverer software (Thermo Scientific). 

Image co-registration and correlation analysis 

Image co-registration and correlation analysis were performed with Matlab software 

(The Mathworks Inc., Natick, MA, USA) using peak-picked and TIC normalized data106. 

We analyzed three sections from three different breast tumor xenografts from 

pimonidazole-injected mice that were imaged by the approach described above. Ion 

images of individual m/z values were co-registered to the optical image of the anti-

pimonidazole stained tissue samples using the position of fiducial markers and tumor 

boundary, as previously described164. 
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Overlap between IHC and MSI detection of pimonidazole was determined by 

overlaying individual ion images and the anti-pimonidazole stained images. The 

overlap images were constructed by using a relative threshold of 0.2 for all ion images, 

which means that only the 80% of pixels with the highest intensity were plotted as 

green dots. 

Correlation analysis was performed by calculating Pearson’s correlation coef-

ficients for m/z 223.2 with all other variables (i.e. m/z values), for each MSI data set. 

Identification of endogenous metabolites 

Endogenous metabolites were identified from parent ion masses and fragmentation 

spectra. Accurate mass data (<1 ppm mass error) were obtained from on-tissue AP-

SMALDI MS experiments. AP-SMALDI MS spectra were analyzed with XCalibur 

software. Fragmentation spectra were obtained from MALDI on-tissue MS/MS 

product ion acquisition and analyzed with MassLynx software (Waters, UK). LIPID 

MAPS (www.lipidmaps.org), the Human Metabolome Database (version 3.6, 

www.hmdb.ca) and MassBank (www.massbank.jp) were used to search for metabolite 

structures and fragmentation spectra. 

5.3 Results and Discussion 

Detection of pimonidazole by MALDI-MS 

The pimonidazole compound was readily detectable with MALDI as the protonated 

molecule (m/z 255.1). Also several pimonidazole fragments were detected in the MS 

mode, with the highest intensity fragments at m/z 98.1, 124.1, 142.1, 223.2 and 226.2 

(Figure 5.1a). The ions at m/z 98.1, 124.1 and 142.1 are fragments of the piperidine 

side chain150. Other fragments contain the imidazole ring atoms or parts of the 

imidazole ring. Only low intensity fragments were observed in an electrospray 

ionization (ESI) experiment; m/z 124.1 and 142.1 were detected with 100x lower 

intensity than m/z 255.1. The observed fragmentation can thus mainly be attributed 

to the desorption/ionization process used. Misonidazole, a pimonidazole analog, has 

an absorbance maximum at 325 nm143, which is close to 355 nm, the wavelength of 

the laser used. This might explain pimonidazole’s easy fragmentation behavior in 

MALDI. 
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Figure 5.1 MALDI mass spectra of pimonidazole obtained from the pure compound and from 
tumor tissue from a pimonidazole-injected mouse. (a) MALDI mass spectrum of pimonidazole. 
Shown are the protonated parent ion at m/z 255.1 and its main fragments. (b) Chemical 
structure of pimonidazole with characteristic fragments as determined by MS/MS. On-tissue 
MS/MS analysis shows that m/z 223.2 is a pimonidazole-derived ion. MS/MS spectra of m/z 
223.2 from (c) pimonidazole and (d) pimonidazole-treated tissue. 

MALDI-MSI of pimonidazole in breast tumor xenografts 

We analyzed three breast tumors from pimonidazole-injected mice and one untreated 

control tumor. Figure 5.2a shows the MS images of three detected pimonidazole-

derived ions, m/z 124.1, 142.1 and 223.2. The protonated parent ion was also 

observed at m/z 255.1. Overlays of average spectra of pimonidazole-treated and 

untreated tumor tissue (Figure 5.2b) show the detection of these ions only in the 

pimonidazole-treated tumor tissue and not in the control tumor tissue. 

On-tissue MS/MS fragmentation of m/z 223.2 confirmed its pimonidazole-derived 

nature (Figure 5.1c and d). Given the low molecular weight of pimonidazole, high 
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mass accuracy measurements with an Orbitrap mass analyzer were performed to 

confirm the elemental composition of the detected ions. The predicted composition 

from on-tissue mass measurements matched those of the pimonidazole compound 

and its derivatives as listed in Table 5.1. 

 

Figure 5.2 MALDI-MSI analysis shows the distribution of pimonidazole-derived ions in tumor 
tissue. (a) Pimonidazole (Pimo)-derived ions with m/z 124.1, 142.1 and 223.2 are solely 
detected in tumor tissue from pimonidazole-injected mice, and not in control tumor tissue. (b) 
MALDI-MSI spectra (zoom) from treated (red) and untreated (black) tumor tissue. Presence of 
pimonidazole-derived ions is indicated with an arrow. 

Detection of pimonidazole metabolism 

It is well known that 2-nitroimidazoles are heavily metabolized in vivo. Under hypoxic 

conditions, they are reduced, and after a series of steps they finally bind to cellular 

nucleophiles. It is estimated from in vitro experiments that around 20% of reductively 

activated 2-nitroimidazoles react with thiol containing proteins and small molecules 

such as glutathione161. The remaining 80% is subject to hydrolytic fragmentation. 
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Several 2-nitroimidazole metabolites are described in the literature, either in in vivo 

or in vitro experiments 143, 156-161, 165. 

Table 5.1 Monoisotopic mass values for pimonidazole-derived ions from tumor tissue. Assign-
ments are based on high mass accuracy (<3 ppm root-mean-square error) experiments on an 
AP-SMALDI instrument coupled to an Orbitrap Q Exactive mass spectrometer. *Based on col-
lision energy required to induce fragmentation. **Based on prediction from ESI data of pimo-
nidazole in Metlin database. 

Elemental 

composition 

Adduct Exact mass Measured 

accurate mass  

Mass error 

(ppm) 

C11H19N4O3  [M+H]+  255.14517  255.14497  -0.8 
C11H19N4O  [M]+*  223.15534  223.15522  -0.5 
C8H16NO  [M]+**  142.12264  142.12267  0.2 
C8H14N  [M]+**  124.11208  124.11222  1.1 

 
We searched for pimonidazole metabolites that are part of the reductive metabolism 

of pimonidazole. These metabolites are not generated under normoxic conditions, nor 

in necrotic tissue. Their confinement to hypoxic regions makes them markers of tumor 

hypoxia. 

To characterize the metabolic changes that pimonidazole undergoes in hypoxic 

regions, metabolites and other small molecules were extracted from treated and 

untreated tumor tissue, and analyzed by LC-MS. The pimonidazole compound was 

included as a standard in our analysis to check for mass spectrometry-induced 

changes to this compound. Several species that are part of the reductive pathway with 

low or no abundance in the standard and untreated tumor sample were identified. 

Pimonidazole hydroxylamine is the four-electron reduction product that is the 

main reactive species that needs to be formed for thiol-binding to occur143, 156, 158. 

However, this molecule can rearrange to form hydroxy derivatives with the same 

elemental composition. The detection of m/z 241.2 in two major elution peaks points 

towards the detection of multiple species. The elution of hydroxylamine and hydroxyl 

derivatives in two chromatographic peaks has been previously reported for the 2-

nitroimidazole benznidazole165, 166. 

Further reduction yields the six-electron reduction product of pimonidazole, 

which is an amine derivative (m/z 225.2). Interestingly, also a pimonidazole 

derivative at m/z 223.2 was detected in the tumor tissue samples from pimonidazole-

injected mice. An ion with the same elemental composition is postulated to be the 

nitrenium intermediate that is responsible for binding to thiol groups158-160. To our 
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knowledge, an ion with this elemental composition has not been previously detected 

for pimonidazole or a 2-nitroimidazole analog. 

Table 5.2 Pimonidazole metabolites after in vivo reduction of pimonidazole. Assignments are 
based on high mass accuracy LC-MS experiments (<3 ppm root-mean-square error) using an 
Orbitrap Fusion mass spectrometer. *Derivative. 

RT 
(min) 

Measured 

accurate 

mass 

Exact mass Mass 

error 
(ppm) 

Adduct Elemental 

composition 
Proposed 

metabolite 

7.7 201.17094 201.17099 -0.2 [M+H]
+
 C

9
H

21
N

4
O Guanidine 

der.* 
2.9 223.15528 223.15534 -0.2 [M]

+
 C

11
H

19
N

4
O Nitrenium 

7.7 225.17095 225.17099 -0.1 [M+H]
+
 C

11
H

21
N

4
O Amine der. 

2.8/ 
3.9 

241.16582 241.16590 -0.3 [M+H]
+
 C11H21N4O2 Hydroxylamine 

Hydroxyl der. 

7.7 259.17704 259.17647 2.2 [M+H]
+
 C11H23N4O3 Dihydro 

dihydroxy der. 
3.0 271.17639 271.17647 -0.3 [M+H]

+
 C12H23N4O3 Methoxy der. 

7.7 273.19205 273.19212 -0.2 [M+H]
+
 C12H25N4O3 Methoxy der. 

2.7 265.62311 265.62321 -0.4 [M+2H]
2+

 C
21

H
37

N
7
O

7
S Glutathione 

adduct 
 

The binding of reductively activated pimonidazole to a thiol-containing molecule was 

shown with the detection of an ion at m/z 265.6, which was assigned to a doubly 

charged pimonidazole adduct of glutathione. Its charge state was confirmed by 

detection of the 13C and 34S isotopic peaks at m/z +0.50168 and +0.99790, respectively. 

This glutathione adduct has previously been reported as a product of the in vitro 

reduction of misonidazole and in vivo reduction of benznidazole157, 158, 165. 

As expected, several products of the hydrolytic fragmentation of reductively 

activated pimonidazole were found as well. Hydrolysis of a hydroxyl derivative 

yielded a dihydro dihydroxy compound (m/z 259.2)158-160, 166. This compound can 

fragment or react with other molecules, releasing glyoxal and a guanidine derivative 

(m/z 201.2)167-169. The signals at m/z 271.2 and 273.2 were assigned to methoxy 

derivatives of pimonidazole165. 
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Figure 5.3 Putative chemical structures of the identified pimonidazole-derived metabolites. The 
indicated pathway is based on existing literature (see ‘Detection of pimonidazole metabolism’). 
For each species the detected m/z value is given. R = side chain. G = glutathione. 

Pimonidazole metabolites as hypoxia markers in MSI 

Most pimonidazole metabolites identified by LC-MS were detected in the AP-SMALDI 

imaging data, as determined by accurate mass matching. Figure 5.4 shows that a 

different distribution was observed for m/z 201.2 and 223.2 as compared to the 

distribution for the parent compound at m/z 255.1 and the side chain fragment at m/z 

142.1. 
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Figure 5.4 AP-SMALDI MSI of a tumor tissue section showing the distribution of pimonidazole-
derived ions. A different distribution was observed for m/z 201.17070 and 223.15515 as 
compared to the distribution for the parent compound at m/z 255.14499 and the side chain 
fragment at m/z 142.12268. The overlay of m/z 223.15515 (blue) and m/z 255.14499 (red) 
shows overlap of the two ions only at the border of the tissue section (pink). The intensity for 
each ion was normalized to the total ion count (TIC) per pixel. 

To determine which pimonidazole metabolites are suitable markers for tumor 

hypoxia in MALDI-MSI, we compared for each metabolite the signal intensity and the 

contribution of MALDI fragments to the signal. 

For the MALDI-MSI data, only the derivatives at m/z 223.2 and 225.2 were 

detected, due to the lower sensitivity and mass resolution of the QTOF instrument as 
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compared to the AP-SMALDI instrument. Nevertheless, when comparing m/z 223.2 

with m/z 124.1 or 142.1, a similar difference in distribution was observed as 

determined by AP-SMALDI (Figure 5.2 and Figure 5.4). 

To determine the contribution of MALDI-induced fragmentation to the 

pimonidazole metabolite signals, 50 pmol pimonidazole was mixed with untreated 

tissue homogenate and measured with MALDI-MS. Pimonidazole derivative m/z 223.2 

shows a five times higher detection after in vivo metabolism of pimonidazole as 

compared to the detection from tissue homogenate mixed with unreacted 

pimonidazole (Figure 5.5). These results suggest that the ion at m/z 223.2 observed in 

tumor tissue from pimonidazole-injected animals can be mainly attributed to the 

pimonidazole metabolite. 

The pimonidazole derivative at m/z 223.2 could be easily detected in both the 

MALDI and AP-SMALDI imaging experiments. We therefore propose to use m/z 223.2 

as hypoxia marker for mass spectrometric analysis of tumor tissue from 

pimonidazole-injected animals. All further analyses will focus on this pimonidazole 

metabolite at m/z 223.2. 

Verification of pimonidazole distribution with immunohisto-

chemistry 

Additional verification was performed with immunohistochemistry (IHC). IHC 

staining against pimonidazole is a widely used method for hypoxia detection150. Tissue 

sections adjacent to the sections used for mass spectrometric analysis were stained. 

The anti-pimonidazole stained images were co-registered with the MALDI-MSI data. 

Overlap between IHC and MSI detection of pimonidazole was determined by 

overlaying individual ion images and the anti-pimonidazole stained images. 

Figure 5.6 shows the results of this qualitative overlap analysis for one 

representative tumor. The darkest anti-pimonidazole stain was observed at the tumor 

boundary and at the border to necrotic regions. Pimonidazole metabolite m/z 223.2 

co-localized with the marker detected by IHC mainly around the necrotic tumor core. 

The larger area stained positive for hypoxia by IHC might be explained by the higher 

sensitivity of IHC as compared to MSI. The detected species are also different: IHC 

detects pimonidazole protein adducts and MSI detects unbound pimonidazole 

metabolites. 
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Adjacent tissue sections were co-registered for the analysis and did not perfectly 

overlap. The use of an MSI-based hypoxia marker makes co-registration unnecessary, 

and thus avoids a potentially error-introducing step. 

 

 

 

Figure 5.5 Pimonidazole derivative m/z 223.2 is the ion detected with the highest intensity from 
tumor tissue in MALDI-MSI. (a) MALDI-MSI detection of pimonidazole derivatives. Data are 
averaged for three tumors and shown as average ± standard deviation. (b) Pimonidazole 
derivative m/z 223.2 shows a five times higher detection after in vivo metabolism of 
pimonidazole as compared to detection from tissue homogenate mixed with unreacted 
pimonidazole (i.e. MALDI-induced fragmentation). Shown is the detection ratio for each ion as 
compared to m/z 255.1. Contribution of MALDI-induced fragmentation to the total signal is 
shown in light grey. 
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Figure 5.6 IHC detection of pimonidazole. (a) Distribution of hypoxic regions by pimonidazole 
antibody staining. Brown tissue staining is indicative of pimonidazole binding and is strongest 
at the tumor boundary and around the necrotic regions. (b) Co-registration of a normalized and 
thresholded MS image of pimonidazole metabolite m/z 223.2 (green) from an adjacent tissue 
section. (c) H&E stained adjacent tissue section. Necrotic regions are indicated by a dashed line. 

Correlation of the pimonidazole metabolite m/z 223.2 with endo-

genous lipids and metabolites 

Hypoxic regions in MDA-MB-231 breast tumor xenografts were identified by means of 

the hypoxic pimonidazole metabolite m/z 223.2. We performed correlation analysis to 

identify biomolecules that are spatially correlated with these hypoxic regions. All 

three tumors showed a highly similar correlation pattern as determined by Pearson’s 

correlation. The strongest correlations were identified for three low molecular weight 

ions at m/z 137.1, 160.1 and 204.1 (Figure 5.7). These ions show indeed a similar 

distribution as compared to the pimonidazole metabolite m/z 223.2 (insets Figure 

5.7). Accurate mass measurements and on-tissue MS/MS fragmentation analyses 
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identified these ions as 1-methylnicotinamide [M]+ for m/z 137.1 and acetylcarnitine 

[M+H]+ for m/z 204.1. The ion at m/z 160.1 (elemental composition C8H18NO2) 

remains so far unidentified. 

 

Figure 5.7 Correlation of m/z 223.2 with other m/z features as determined by Pearson’s 
correlation. 1-methylnicotinamine, C8H18NO2 and acetylcarnitine were found to be highly 
correlated with m/z 223.2. Data are shown for one representative tumor section. 

Elevated levels of 1-methylnicotinamide were previously found in human cell lines 

overexpressing nicotinamide N-methyltransferase using untargeted LC-MS/MS ana-

lysis170. Nicotinamide N-methyltransferase catalyzes the transfer of a methyl group 

from S-adenosyl-L-methionine to nicotinamide, generating S-adenosylhomocysteine 

and 1-methylnicotinamide. This enzyme is overexpressed in several cancer types and 

is known to support tumorigenesis171, 172. A high expression of nicotinamide N-methyl-

transferase has been reported for the MDA-MB-231 breast cancer cell line used as 
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orthotopic xenograft model in this chapter173. It was previously reported that nicotin-

amide N-methyltransferase is involved in the regulation of protein methylation in 

cancer cells, whereby 1-methylnicotinamide functions as a sink for methylation 

units170. 

We have identified the ion at m/z 204.1 as the protonated ion of acetylcarnitine. A 

previous MALDI-MSI study using the same breast tumor xenograft model identified 

two acylcarnitines that localized to hypoxic tumor regions, namely palmitoylcarnitine 

and stearoylcarnitine21. Carnitine and acetylcarnitine are involved in the mitochon-

drial metabolism of acetyl coenzyme A (acetyl-CoA). Acetyl-CoA is converted to CoA 

and acetylcarnitine in the presence of carnitine174. The free CoA can then be used for 

fatty acid oxidation and in the citric acid cycle. Hypoxia is associated with a perturba-

tion of CoA homeostasis and an increase in the ratio between acylcarnitines and free 

carnitine175. 

5.4 Conclusions 

With MSI, the distribution of a wide variety of biomolecules can be studied. Ideally, 

these distributions are directly correlated with tissue regions of interest. However, the 

markers that delineate these tissue regions can typically only be studied with other 

imaging techniques, as for example IHC. We have used the exogenous marker pimo-

nidazole for direct detection of hypoxic tissue regions in a breast tumor xenograft 

model, thereby avoiding the co-registration of MSI data with other imaging data. 

A MALDI-MSI approach is presented that combines the detection of pimonidazole 

and a hypoxic pimonidazole metabolite with the multiplexing capabilities of the 

technique. We have used this metabolite to image hypoxic tissue regions and their 

associated biomolecules. Several endogenous species localized to hypoxic tissue 

regions as defined by the hypoxic pimonidazole metabolite. Interestingly, the 

identified species are known to be involved in hypoxia or metabolic reprogramming in 

cancer, although their specific roles remain to be elucidated. Pimonidazole is a widely 

used marker of tissue hypoxia. We expect that the presented MALDI-MSI approach is 

also applicable to other tissues from pimonidazole-injected animals or humans. 



 
 
 

 
 

88 

 



 
 
 

 
 

89 

  

Conclusions and future research 
 

 

6.1 Conclusions 

At the moment, the MSI field is moving from proof-of-principle studies to biomedical 

and clinical applications. The popularity of the technique is exemplified by the many 

occurrences of ‘MSI’ in titles of applied research papers. However, the presence of ‘MSI’ 

in a title indicates that the used technique is just as important as the biomedical or 

clinical research results. As MSI becomes more established, its name will be gradually 

replaced by these results. 

This thesis has explored the use of TMAs for MALDI-MSI. We have investigated the 

feasibility of using MALDI-MSI data obtained from the analysis of TMAs to predict 

treatment response and disease progression in cancer. In addition, we have 

investigated the use of a chemical marker to detect hypoxic tumor regions. For this 

purpose, we have developed a method to detect the exogenous hypoxia marker 

pimonidazole directly from tumor tissue using MALDI-MSI. 

The use of TMAs for MSI 

TMAs are commonly used for high-throughput analysis of cancer tissue. The small size 

of the tissue cores and array layout enable the analysis of hundreds of cores within a 

single MALDI-MSI experiment, and thus under highly similar experimental conditions. 

In addition, clinical follow-up data is typically available for these samples. Combined 

with MSI, TMAs can be used to find and validate diagnostic or prognostic markers. 

In Chapter 3 and Chapter 4 we have shown the mass spectra that can be 

obtained with MALDI-MSI analysis of TMAs. We have used these spectra to predict 

treatment response and disease progression using different (multivariate) data 

analysis methods and classifiers. We have observed a small predictive power for some 
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of the investigated approaches. However, we have also described several issues 

concerning the MALDI-MSI analysis of TMAs. In general, the detected biological and 

experimental variability between the tissue cores limited the classification accuracies 

that we could obtain. The observed variability was larger between the patient samples 

(Chapter 4) than between the patient-derived xenograft (PDX) samples (Chapter 3). 

This can be partially attributed to the controlled laboratory environment in which the 

PDX tumors were grown and harvested. In Section 6.2, suggestions for improvements 

are presented. 

As a side note, even though clinically useful biomarkers or biomarker patterns are 

heavily sought after, only a limited number of attempts have been successful. For 

example, DNA sequencing technology has detected only small differences for the 

cancer types investigated in this thesis (triple-negative breast cancer and head and 

neck cancer). 

Hypoxia detection using pimonidazole 

In Chapter 5 we have presented a method to detect the hypoxia marker pimonidazole 

directly from fresh frozen tumor tissue using MALDI-MSI. We have shown that a 

pimonidazole metabolite can be used to image hypoxic regions and hypoxia-

associated lipids and metabolites in a single experiment; no co-registration of MSI 

data with immunohistochemical (IHC) data is needed. 

It has become a standard procedure to stain the tissue section after MSI analysis 

(typically with hematoxylin and eosin, H&E). The use of one tissue section is more 

accurate as compared to co-registered adjacent sections. Consecutive sections may 

have different shapes due to sectioning and preparation of the sections for MSI, 

histological staining or IHC. Moreover, tumor tissue does consist of easily recognizable 

structures like brain tissue and is therefore more challenging to co-register. In 

principle, it is also possible to perform IHC after MSI on the same tissue section. 

Instead, we have designed a method that omits IHC staining altogether, which is faster, 

suitable to fragile tissue sections and potentially more accurate. 

The presented method facilitates the study of hypoxia-associated lipids and 

metabolites. These molecular classes play a role in cancer processes, but have not 

been studied as much as proteins. We have identified a heterogeneous distribution of 

1-methylnicotinamide and acetylcarnitine, which mostly co-localized with hypoxic 
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tumor regions. Ultimately, endogenous molecules might be identified that can serve as 

hypoxia markers for MSI. 

We have provided some insight in the complex in vivo metabolism of 

pimonidazole. To the best of our knowledge this is the first study of pimonidazole 

metabolism using mass spectrometry. 

6.2 Outlook 

There are several directions in which the research presented in this thesis can be 

continued and improved. 

Study design and sample preparation 

TMAs were originally designed to facilitate the large-scale investigation of diagnostic 

and prognostic markers using techniques such as IHC and fluorescence in situ 

hybridization. Recently, sample preparation protocols have been developed that make 

TMAs amenable to MALDI-MSI analysis. However, so far only limited attention has 

been paid to the influence of sample preparation and storage on the results (see 

Section 4.2). A thorough investigation of the effects of formalin fixation, paraffin 

embedding and sample storage would therefore be valuable. Mass spectrometric 

studies using homogenised samples do not report major effects of storage time, as 

reviewed by Shi et al.176. However, the differences in sample preparation between 

these studies and MSI studies do not exclude a potential effect: sample preparation for 

MSI typically is less ‘harsh’ to retain tissue integrity, which might lead to inefficient 

protein ‘unlocking’. Future improvements in sample preparation could focus on 

improving the reversal of protein aggregation and cross-linking, maybe combined 

with the testing of other proteolytic enzymes such as Lys-C, Arg-C and r-Lys-N. 

For each tumor sample in a TMA only a small tissue piece is measured. This piece 

might not be representative for the tumor. With the current improvements in 

measurement speed of mass spectrometers, the analysis of tens of tissue sections 

(with a diameter of >1 cm, instead of 0.6 mm for TMA tissue cores) can be performed 

in a relatively small amount of time. The analysis of larger tissue sections as compared 

to tissue cores also provides information on intratumor heterogeneity. 

So far, the studies that were most successful in the identification of prognostic 

markers performed intact protein analysis on fresh frozen tissue sections114, 119. In 

these studies, TMAs were not used for the discovery set, but for the immunohisto-
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chemical validation of the identified markers. A recent study by Dekker et al. shows 

the reproducibility of this type of approach24. Two independent studies in different 

laboratories were able to confirm three out of four peaks associated with tumor-

activated stroma in breast cancer. 

Data analysis  

Clinical samples show a high degree of variability, and therefore clinical studies 

require large numbers of samples. In these studies, standardization and quality 

control are important to ensure reproducibility of the results. Several research fields 

are more advanced on these topics, such as the genomics and proteomics fields177. The 

development of standard software for quality control and data analysis will greatly 

facilitate clinical MSI studies. The embedding of dedicated (bio)informaticians in 

research groups is therefore indispensable. 

Chemical markers 

Chapter 5 has demonstrated the detection of an administered chemical marker to 

investigate intratumor heterogeneity with MALDI-MSI. Future research might be 

directed towards the design of a marker with optimal chemical properties for 

detection by MALDI-MSI. The pimonidazole compound was chosen for this study, 

because it is an established hypoxia marker. This allowed us to compare detection of 

this compound by MSI with standard detection by IHC. However, pimonidazole’s 

chemical properties are not ideal for MALDI-MSI detection; it fragments during the 

MALDI process, which leads to reduced sensitivity and spectral overlap of MALDI-

induced fragments and pimonidazole metabolites. The incorporation of an UV-

cleavable tag in the side chain, such as used in the ‘Tag-Mass’ and ‘TAMSIM’ concepts 

might improve its detection86, 87. The side chain is not involved in adduct formation, 

but serves as antibody binding site. It can thus be modified provided the modification 

does not reduce compound uptake in the tumor. The addition of an UV-cleavable tag 

would allow the detection of protein adducts instead of metabolites. This might have 

several advantages over the current method, including increased specificity and 

sensitivity. 
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General 

In recent years, a number of topics have emerged where MSI has the potential to make 

a contribution, such as prediction of disease progression, the delineation of tumor 

margins during surgery and the investigation of intratumor heterogeneity. Mass 

spectrometers are still becoming faster, more sensitive, precise and accurate, which 

greatly facilitates MSI studies. However, MSI has a few inherent limitations, such as a 

lack of analytical depth, which also limit its application. 

There will be an increasing need for researchers with computing skills and 

statistical knowledge to fully explore the large and complex MSI data sets. Only close 

collaborations of researchers with expertise in MSI, histo(patho)logy and data analysis 

will exploit the full potential of MSI. 
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Appendix 

Table. Clinicopathological parameters of the sample set used in Chapter 4. 

Variable Patients (%) 

Sex 
  Male 
  Female 

 
112 (63%) 
66 (37%) 

Mean age at diagnosis, range (years)  62, 37 – 87 
Smoking 
  Never 
  Stopped > 1 year 
  Current smoking or stopped < 1 year 
  Missing 

  
32 (18%) 
27 (15%) 
118 (66%) 
1 (1%) 

Alcohol 
  None 
  Occasionally 
  1-4 U/day 
  >4 U/day 
  Missing 

 
34 (19%) 
41 (23%) 
65 (36%) 
37 (21%) 
1 (1%) 

Site 
  Oral cavity 
  Oropharynx 

 
156 (88%) 
22 (12%) 

Clinical TNM-Stage (AJCC) 
  Stage I 
  Stage II 
  Stage III 
  Stage IV 

 
28 (16%) 
46 (26%) 
32 (18%) 
72 (40%) 

Histologically nodal metastasis 
  No 
  Yes 

 
75 (42%) 
103 (58%) 

5-year overall survival 
  Alive 
  Death 

 
90 (51%) 
88 (49%) 

5-year disease-free survival 
  Disease-free 
  Recurrence of disease or death 

 
115 (65%) 
63 (35%) 

 AJCC, American Joint Committee on Cancer. 
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Summary 
 

 

Mass spectrometry imaging (MSI) can detect and identify many different molecules 

without the need for labeling. In addition, it can provide their spatial distributions as 

‘molecular maps’. These features make MSI well suited for studying the molecular 

makeup of tumor tissue. 

Currently, there is an interest in using MSI to predict cancer progression and 

treatment response, which often remains a challenge in today’s clinical practice. 

Experimental evidence shows that tumor heterogeneity (on the inter- and intratumor 

level) plays an important role in tumor biology and therefore in response to treatment. 

The molecular profiles generated by MSI reveal part of this heterogeneity. 

In this thesis, we have combined matrix-assisted laser desorption/ionization 

(MALDI) MSI, histological tissue staining and multivariate data analysis to investigate 

inter- and intratumor heterogeneity. The histopathological analysis of cancer tissue 

provided information on the distribution of tumor cells, stromal components, and 

necrotic and hypoxic tissue regions. Spatially resolved molecular profiles were 

generated with MALDI-MSI. After co-registration of the histological images and MSI 

data, we used histology-specific molecular profiles to predict disease progression and 

treatment response. The molecular changes associated with hypoxic tissue regions 

were also investigated. 

In Chapter 2, strategies for protein identification in MSI are discussed, which is 

one of the current bottlenecks in the field. Identification of the peptide or protein of 

interest is key to answering biomedical questions, but only few of the molecular 

signals in MSI spectra can easily be identified. We discuss bottom-up, top-down and 

indirect identification approaches. The role of mass accuracy in protein identification, 

and developments in on-tissue chemical labeling of proteins are also discussed. 

Chapters 3 and 4 focus on the generation and use of MALDI-MSI data to predict 

treatment response and disease progression. For prediction purposes a (preferably 

large) sample set with available biomedical or clinical data is required. We have used 

arrays of small pieces of formalin-fixed paraffin-embedded (FFPE) tissue, typically 

referred to as tissue microarrays (TMAs). MALDI-MSI analysis of TMAs enables high-
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throughput analysis of tumor tissue that is carefully selected based on its histology. 

This approach generates thousands of spectra from hundreds of different tissue cores. 

Moreover, each spectrum consists of hundreds of different molecular ions. 

Bioinformatic approaches are required to reduce this complexity. 

Chapter 3 presents an approach that combines MALDI-MSI on tissue microarrays 

with Principal Component Analysis and Linear Discriminant Analysis (PCA-LDA) to 

predict treatment response. The feasibility of this approach is evaluated on a set of 22 

patient-derived xenograft models of triple-negative breast cancer. We used PCA-LDA 

to predict response to the chemotherapeutic drug cisplatin based on the proteomic 

information obtained with MALDI-MSI. A small predictive power is observed. The 

comparison of different tissue cores from the same tumor model revealed a clear 

effect of the biological and experimental variability on classifier performance.  

In Chapter 4, the use of a different classification approach is investigated. We 

tested the feasibility of this approach to predict lymph node metastasis and disease-

specific survival from a sample set of 240 head and neck cancers. We discuss how 

MALDI-MSI data from these samples is processed so that it could be used in five 

different classifiers: Linear and Quadratic Discriminant Analysis, a Naive Bayes 

classifier, Decision Tree classifier and Support Vector Machine. Only for disease-

specific survival some of the classifiers showed a small predictive power. We 

demonstrated that our method is sensitive to intensity differences of 50% in typical 

peptide peaks. The observed broad peak distributions made classification difficult. A 

small effect of sample age on spectral quality was observed, which might have 

implications for the comparison of FFPE samples collected over periods of several 

years. As other proteomic approaches using mass spectrometry do not report such an 

effect, future efforts to improve protein extraction from FFPE tissue for MALDI-MSI 

would be valuable. 

Chapter 5 focuses on intratumor heterogeneity. It presents a new method to 

detect and visualize hypoxic tumor regions and hypoxia-associated molecules in a 

breast tumor xenograft model. We investigated the use of the 2-nitroimidazole 

pimonidazole as exogenous hypoxia marker for MALDI-MSI. In hypoxic cells, 

pimonidazole is reduced and forms reactive products that bind to cellular 

nucleophiles. We demonstrated that a reductively activated pimonidazole metabolite 

can be imaged by MALDI-MSI. The immunohistochemical detection of pimonidazole 

adducts on adjacent tissue sections confirmed that this metabolite is localized to 
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hypoxic tissue regions. We used the metabolite to image hypoxic tissue regions and 

hypoxia-associated lipids and metabolites. A heterogeneous distribution of 1-

methylnicotinamide and acetylcarnitine is identified, which mostly co-localized with 

hypoxic tumor regions. Thus, the presented approach is capable of imaging hypoxic 

regions and their associated biomolecules in a single experiment, without the need for 

co-registration of MSI data with immunohistochemical data. Pimonidazole is a widely 

used hypoxia marker. We expect that the presented MALDI-MSI approach might be 

also applicable to other tissues from pimonidazole-injected animals or humans. 

In Chapter 6, the overall conclusions are presented. In addition, perspectives for 

future research are discussed, including further optimization of the sample 

preparation for FFPE tissue and the use of a modified chemical marker for the 

detection of hypoxia. 

The MSI methods for the analysis of tumor tissue presented in this thesis are 

examples of the development of the MSI field towards biomedical and clinical 

applications. We have investigated the feasibility of using TMAs, different data 

analysis techniques, and the use of an immunohistochemical hypoxia marker for 

MALDI-MSI. As the focus shifts from MSI technology to application, research projects 

become increasingly multidisciplinary. This development calls for close collaboration 

of researchers with expertise in MSI, histo(patho)logy and data analysis. 



 
 
 

 
 

116 



 
 
 

 
 

117 

Samenvatting 
 

 

Met behulp van massaspectrometrie imaging (MSI) kunnen veel verschillende 

moleculen worden gedetecteerd en geïdentificeerd zonder deze moleculen te hoeven 

labelen. Tegelijkertijd kan hun ruimtelijke verdeling in een weefsel in kaart worden 

gebracht. Deze kenmerken maken MSI zeer geschikt om tumorweefsel op moleculair 

niveau te bestuderen. 

Er is een groeiende interesse in het gebruik van MSI in het onderzoek naar kanker. 

MSI-datasets worden gebruikt om het verloop van een ziekte en het resultaat van een 

behandeling te voorspellen. Experimenten laten zien dat heterogeniteit (op het inter- 

en intratumorniveau) een belangrijke rol speelt in de biologie van een tumor en dus 

ook in de reactie van een tumor op een behandeling. De moleculaire profielen 

gegenereerd met MSI leggen een deel van deze heterogeniteit bloot. 

We combineerden in dit proefschrift matrixgeassisteerde laser desorptie/ionisatie 

(MALDI) MSI, histologische kleuring en multivariate data-analyse voor het 

onderzoeken van inter- en intratumorheterogeniteit. De histopathologische analyse 

van kankerweefsel gaf informatie over de verdeling van tumorcellen, ondersteunend 

bindweefsel (stroma), en gebieden met dode (necrotische) en zuurstofarme 

(hypoxische) cellen in tumorweefsel. Ruimtelijk opgeloste moleculaire profielen 

werden gegenereerd met MALDI-MSI. Na het co-registreren van de histologische 

beelden en MSI beelden, gebruikten we histologie-specifieke moleculaire profielen om 

het resultaat van een cisplatinabehandeling in borstkanker en het verloop van hoofd-

halskanker te voorspellen. We onderzochten ook de moleculaire veranderingen in 

hypoxisch tumorweefsel. 

In Hoofdstuk 2 bespraken we strategieën voor eiwitidentificatie met MSI. Hoewel 

identificatie van het onderzochte peptide of eiwit belangrijk is voor het beantwoorden 

van een biomedisch vraagstuk, kunnen maar weinig moleculaire signalen in MSI-

spectra eenvoudig geïdentificeerd worden. We bespraken ‘bottom-up’, ‘top-down’ en 

indirecte identificatiestrategieën. Het belang van massa-accuraatheid in eiwit-

identificatie en de ontwikkelingen in het chemisch labelen van eiwitten in het weefsel 

werden ook besproken. 
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In Hoofdstuk 3 en 4 werd gefocust op de generatie en het gebruik van MALDI-MSI data 

voor het voorspellen van de behandelreactie en het ziekteverloop van twee 

verschillende soorten kanker. Om een voorspelling te kunnen doen, zijn een (bij 

voorkeur groot) aantal monsters nodig, waar biomedische of klinische gegevens voor 

beschikbaar zijn. Wij gebruikten ‘arrays’ met kleine stukjes formaline-gefixeerd 

paraffine-ingebed (Engels: FFPE) weefsel, die ‘tissue microarrays’ (TMAs) worden 

genoemd. Het gebruik van TMAs maakt de ‘high-throughput’ analyse van 

tumorweefsel met MALDI-MSI mogelijk. Deze analyse genereert duizenden spectra 

van honderden verschillende weefselstukjes. Bovendien bestaat elk spectrum uit 

honderden verschillende moleculaire ionen. Methoden uit de bioinformatica zijn 

nodig om deze complexiteit te reduceren. 

In Hoofdstuk 3 presenteerden we een strategie die MALDI-MSI analyse van TMAs 

combineert met Principale Componenten Analyse en Lineaire Discriminant Analyse 

(PCA-LDA) voor het voorspellen van een behandelreactie. We bepaalden de 

geschiktheid van deze methode aan de hand van een set van 22 xenograftmodellen 

(humane tumoren geïmplanteerd in muizen) van drievoudig-negatieve borstkanker. 

We gebruikten PCA-LDA voor het voorspellen van het effect van een behandeling met 

het chemotherapeutisch middel cisplatina, gebaseerd op de eiwitinformatie verkregen 

met MALDI-MSI. We constateerden een klein voorspellend vermogen. De vergelijking 

van verschillende weefselstukjes van hetzelfde tumormodel liet een duidelijk effect 

van de biologische en experimentele variabiliteit op het resultaat van de classificatie 

zien. 

In Hoofdstuk 4 beschreven we een andere classificatiemethode. We testten de 

geschiktheid van deze methode om lymfekliermetastase en ziekte-specifieke over-

leving te voorspellen van een set van 240 hoofd-halstumoren. We bespraken hoe 

MALDI-MSI data van deze monsters is verwerkt zodat het gebruikt kon worden in vijf 

verschillende ‘classifiers’: Lineare en Quadratische Discriminant Analyse, Naive Bayes 

classifier, Decision Tree classifier en Support Vector Machine. Alleen voor ziekte-

specifieke overleving lieten sommige van de classifiers een klein verspellend 

vermogen zien. We toonden aan dat onze methode gevoelig is voor intensiteits-

verschillen van 50% voor een representatieve peptidepiek. De brede piekverdelingen 

maakten classificatie moeilijk. We namen een klein effect van de leeftijd van FFPE 

weefsel op de spectrale kwaliteit waar, wat gevolgen zou kunnen hebben voor de 

vergelijking van FFPE weefsel dat verzameld is gedurende een periode van meerdere 
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jaren. Andere ‘proteomics’-technieken die gebruikmaken van massaspectrometrie 

laten dit effect niet zien. Verbetering van de eiwitextractie van FFPE weefsel voor 

MALDI-MSI zou dus waardevol kunnen zijn. 

Hoofdstuk 5 focuste op intratumor heterogeniteit. In dit hoofdstuk presenteerden 

we een nieuwe methode om hypoxische gebieden in tumoren en hypoxie-

geassocieerde moleculen te detecteren en visualiseren in een borsttumormodel. We 

onderzochten het gebruik van de 2-nitroimidazool pimonidazole als een exogene 

hypoxiemarker voor MALDI-MSI. Pimonidazole wordt in hypoxische cellen 

gereduceerd en vormt reactieproducten die aan cellulaire nucleofielen binden. We 

lieten zien dat een metaboliet van pimonidazole kan worden gedetecteerd en 

gevisualiseerd met MALDI-MSI. De immunohistochemische detectie van 

pimonidazole-adducten op opeenvolgende weefselcoupes bevestigde dat dit 

metaboliet zich bevindt in de hypoxische weefselgebieden. We gebruikten het 

metaboliet vervolgens voor het detecteren van hypoxie-geassocieerde lipiden en 

metabolieten. De verdeling van 1-methylnicotinamide en acetylcarnitine overlapte 

grotendeels met de hypoxische tumorgebieden. Deze methode is dus in staat 

hypoxische gebieden en de geassocieerde moleculen te detecteren zonder dat co-

registratie van MSI beelden met immunohistochemische beelden nodig is. 

Pimonidazole is een veelgebruikt hypoxiemarker. We verwachten dat de 

gepresenteerde MALDI-MSI methode ook toepasbaar is op ander weefsel van 

pimonidazole-geïnjecteerde dieren of mensen. 

In Hoofdstuk 6 presenteerden we de algemene conclusies. Daarnaast werden 

toekomstige onderzoekmogelijkheden besproken, waaronder verdere optimalisatie 

van de monstervoorbereiding voor FFPE weefsel en het gebruik van een 

gemodificeerde marker voor hypoxiedetectie. 

De methoden voor de analyse van tumorweefsel die zijn gepresenteerd in dit 

proefschrift zijn voorbeelden van (bio)medische toepassingen van MSI. We hebben 

het gebruik onderzocht van TMAs, verschillende data-analysetechnieken, en een 

immunohistochemische hypoxiemarker voor MALDI-MSI. Nu de focus van techniek-

ontwikkeling naar toepassing verschuift worden onderzoeksprojecten in toenemende 

mate multidisciplinair. Deze ontwikkeling maakt hechte samenwerking tussen 

onderzoekers met expertise in MSI, histo(path)ologie en data-analyse noodzakelijk. 
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