Controlled self-assembly of three-dimensional shapes holds great potential for fabrication of functional materials. Their practical realization requires a theoretical framework to quantify and guide the dynamic sculpting of the curved structures that often arise in accretive mineralization. Motivated by a variety of bioinspired coprecipitation patterns of carbonate and silica, we develop a geometrical theory for the kinetics of the growth front that leaves behind thin-walled complex structures. Our theory explains the range of previously observed experimental patterns and, in addition, predicts unexplored assembly pathways. This allows us to design a number of functional base shapes of optical microstructures, which we synthesize to demonstrate their light-guiding capabilities. Overall, our framework provides a way to understand and control the growth and form of functional precipitating microsculptures.

Additional Metadata
Publisher AAAS
Funder NWO
Persistent URL dx.doi.org/10.1126/science.aah6350
Journal Science
Citation
Kaplan, C.N, Noorduin, W.L, Li, L, Sadza, R, Folkertsma, L, Aizenberg, J, & Mahadevan, L. (2017). Controlled growth and form of precipitating microsculptures. Science, 355(6332), 1395–1399. doi:10.1126/science.aah6350