2017-07-07
Nonlinear cavity optomechanics with nanomechanical thermal fluctuations
Publication
Publication
Nature Commun. , Volume 8 - Issue Article number: 16024 p. 1- 10
Although the interaction between light and motion in cavity optomechanical systems is inherently nonlinear, experimental demonstrations to date have allowed a linearized description in all except highly driven cases. Here, we demonstrate a nanoscale optomechanical system in which the interaction between light and motion is so large (single-photon cooperativity C-0 approximate to 10(3)) that thermal motion induces optical frequency fluctuations larger than the intrinsic optical linewidth. The system thereby operates in a fully nonlinear regime, which pronouncedly impacts the optical response, displacement measurement and radiation pressure backaction. Specifically, we measure an apparent optical linewidth that is dominated by thermo-mechanically induced frequency fluctuations over a wide temperature range, and show that in this regime thermal displacement measurements cannot be described by conventional analytical models. We perform a proof-of-concept demonstration of exploiting the nonlinearity to conduct sensitive quadratic readout of nanomechanical displacement. Finally, we explore how backaction in this regime affects the mechanical fluctuation spectra.
| Additional Metadata | |
|---|---|
| European Research Council (ERC) , NWO | |
| NPG | |
| S.A. Mann (Sander) | |
| doi.org/10.1038/ncomms16024 | |
| Nature Commun. | |
| Organisation | Photonic Forces |
|
Leijssen, R., La Gala, G., Freisem, L., Muhonen, J., & Verhagen, E. (2017). Nonlinear cavity optomechanics with nanomechanical thermal fluctuations. Nat. Commun., 8(Article number: 16024), 1–10. doi:10.1038/ncomms16024 |
|