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Il mare è appena increspato e piccole onde battono sulla riva sabbiosa. Il signor Palomar
è in piedi sulla riva e guarda un’onda. Non che egli sia assorto nella contemplazione delle

onde. Non è assorto, perchè sa bene quello che fa: vuole guardare un’onda e la guarda.
Non sta contemplando, perchè per la contemplazione ci vuole un temperamento adatto,

uno stato d’animo adatto e un concorso di circostanze esterne adatto: e per quanto il
signor Palomar non abbia nulla contro la contemplazione in linea di principio, tuttavia

nessuna di quelle tre condizioni si verifica per lui. Infine non sono ”le onde” che lui
intende guardare, ma un’onda singola e basta: volendo evitare le sensazioni vaghe, egli si

prefigge per ogni suo atto un oggetto limitato e preciso.

[ The sea is barely wrinkled, and little waves strike the sandy shore. Mr. Palomar is
standing on the shore, looking at a wave. Not that he is lost in contemplation of the

waves. He is not lost, because he is quite aware of what he is doing: he wants to look at a
wave and he is looking at it. He is not contemplating, because for contemplation you

need the right temperament, the right mood, and the right combination of exterior
circumstances; and though Mr. Palomar has nothing against contemplation in

principle, none of these three conditions applies to him. Finally, it is not "the waves"
that he means to look at, but just one individual wave: in his desire to avoid vague

sensations, he establishes for his every action a limited and precise object. ]

— Italo Calvino Palomar
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1
INTRODUCTION

1.1. BIOLOGICAL QUESTIONS AND BACKGROUND

All organisms on our planet live in a rhythmic environment, arising from the light-dark
cycle set by the sun. Evolution has driven many organisms to develop strategies to ac-
tively interact with this cycle. Indeed, many organisms, in essentially all kingdoms of
life, have synchronized their cellular and behavioural activities with the day-night cycle.
It is generally believed that this synchronization provides a fitness benefit, although this
benefit has rarely been quantified experimentally.

In order to synchronize its activities with the day-night cycle, the organism needs to
know the time of the day. To this end, many organisms, ranging from cyanobacteria to
fungi, plants, insects and mammals, have developed a circadian clock. A circadian clock
is a biochemical oscillator that can tick autonomously, i.e. in the absence of any driv-
ing, with an intrinsic clock period that is approximately 24 hours. The clock is formed
by biomolecules, such as proteins and DNA, that chemically and physically interact with
one another in what is called a biochemical network. These interactions generate oscil-
lations in the concentrations or activities of the biomolecules, and it is these oscillations
that encode the information on time. Because chemical reactions and physical inter-
actions are fundamentally probabilistic in nature, clocks are inherently noisy. Moreover,
the clocks are read out by biochemical networks downstream of the clock, which are also
stochastic in nature. This raises one of the overarching questions of this thesis, which is
how organisms can reliably estimate the time of the day.

Because clocks are inherently noisy, they tend to run out of phase with their environ-
ment, which would lead to the loss of information on time. To keep the clock in phase
with the day-night cycle, clocks are coupled to daily cues from the environment, such
as light, temperature, or even nutrients. This coupling “entrains” the clock, such that
the oscillations of its components have a fixed phase relationship with the external day-
night rhythm. Indeed, all circadian clocks exhibit this phenomenon of phase locking.
This locking behaviour is characterized by a so-called phase-response curve, which de-
scribes how much the clock is pushed forward or pulled backwards by the input signal as
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a function of the phase of the clock. While these phase-response curves can have com-
plex shapes, they often share features such as a “dead zone”: a phase window or interval,
in which the coupling of the clock to the input signal is very weak. What determines the
shape of the phase-response curve is a wide-open question, which is studied in detail in
this thesis.

While it is generally believed that circadian behaviour provides a fitness benefit for
organisms living in a circadian environment, this benefit has rarely been quantified. One
interesting exception is provided by the prokaryotic cyanobacteria, which is the model
organism of this thesis. Cyanobacteria perform photosynthesis during the day, and, in-
deed, many cyanobacteria possess a circadian clock to anticipate the changes between
day and night. Johnson and co-workers competed wild-type cells against mutant cells
with different clock periods and against arrhythmic strains that harbour an impaired
clock [38, 39]. The wild-type cells rapidly out-competed the arrhythmic cells when the
cells were exposed to cycles of 12 hours of light followed by 12 hours of darkness (so
called LD 12:12 cycles). Yet, when they were grown in constant light conditions (LL), the
arrhythmic strain grew slightly faster than the wild-type cells [39]. These observations
indicate that the clock may confer a fitness benefit, but only if the organism lives in a cir-
cadian environment. In another set of experiments, mutants with different clock periods
were competed with wild-type cells and with each other, in light-dark cycles of varying
period lengths [38, 39]. The striking finding was that the strains that were in circadian
resonance, having a clock period that matches the period of the light-dark cycle, won
the competition. All cultures were subjected to equal average light intensity, which is
important since light is the principal energy source of cyanobacteria; indeed, only the
frequency of the cycles differed. These experiments thus vividly demonstrated that in
rhythmic environments, the strain that grows in resonance with the environment, tends
to have the highest growth rate.

While the experiments of Johnson and co-workers [38, 39] show that circadian be-
haviour can provide a fitness benefit to cells living in a circadian environment, the origin
of the benefit remains poorly understood. Cyanobacteria perform photosynthesis dur-
ing the day to fix the carbon atoms in CO2. Yet, during the day not all the fixed carbon
atoms are used for protein synthesis, energy generation and hence cellular growth: a
fraction is stored in the form of a large polymer called glycogen, which then provides
the principal source of carbon during the night. In fact, some types of cyanobacteria
not only fix carbon, but also nitrogen, in the form of another polymer, cyanophycin.
Moreover, because nitrogen fixation involves an enzyme which is intolerant to oxygen—
a product of photosynthesis—nitrogen fixation happens during the night. These cells
thus fix carbon during the day, yet nitrogen during the night. Clearly, these cells have to
dramatically repartition their proteome every 12 hours. However, how the cyanobacteria
should adjust their proteome, how much glycogen and cyanophycin they should store,
and how this affects their growth rate, are questions that so far have not been answered.

In this thesis, I first use mathematical modelling and computer simulations to in-
vestigate the optimal design of circadian clocks to estimate the time of the day. I then
address the question how the capacity to estimate the time provides a fitness benefit by
studying circadian metabolism. In chapter 2, I consider the scenario where a clock drives
a number of readout systems, and then ask the question how the capacity to infer the
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time depends on the number of oscillatory readout signals. I show that the knowledge
on time increases with the number of readout signals, and that there exists an optimal
phase relation between the oscillatory readout signals that maximizes the precision on
time.

In chapter 3, I investigate the optimal coupling of circadian clocks to entrainment
signals such as light, in the presence of internal noise. Perhaps the most surprising re-
sult is that the precision of estimating the time does not increase monotonically with the
coupling strength: there exists an optimal coupling strength that maximizes the preci-
sion. Yet, the optimal coupling strength does increase with the strength of the internal
noise. I also find that the optimal intrinsic clock period can differ significantly from 24
hrs, depending on the coupling strength and the noise in the system. Also the optimal
width of the dead zone of the phase-response curve depends on the noise in the sys-
tem. I then show that all these results can be understood as a trade-off between linearity
and stability. Finally, I show that the system can be described by three different theories,
which each apply in a different parameter regime.

While many cyanobacterial cells possess a bonafide circadian clock that can run au-
tonomously in the absence of any driving, some cyanobacterial species possess what is
called an hour-glass, which relies on periodic driving by the entrainment signal to ex-
hibit oscillations from which the time can be inferred. In chapter 4, I address why some
species have evolved a bonafide clock while others have evolved an hour-glass clock.
The hypothesis is that the answer depends on the noise in the input signal: clouds,
for example, will lead to fluctuations in one of the most important entrainment cues,
light. By performing extensive stochastic simulations of different mathematical models
of cyanobacterial clocks, I show that when the input noise is weak, both a bonafide clock
and an hour-glass clock perform equally well; yet, when the noise in the input signal is
large, then the bonafide circadian clock is a much more accurate timekeeper. My results
thus suggest that bonafide clocks have evolved, because they allow organisms to accu-
rately estimate the time even in the presence of large fluctuations in the input signal.
I end this chapter by analysing a generic model of a weakly non-linear oscillator. This
analysis shows that my findings are universal, i.e. independent of the details of the clock
design.

In chapter 5, I study circadian metabolism. To this end, I employ the framework that
Hwa and co-workers have developed to describe the relation between growth and pro-
teome composition in the bacterium Escherichia coli [40]. This framework provides a
coarse-grained description of the proteome in terms of quantities that can be measured
experimentally. In the past years, it has been successfully applied to a range of problems
[40–43] and very recently it has been demonstrated that it can even capture the transient
proteome dynamics in response to a nutrient shift [44, 45]. I here extend this framework
to describe the circadian metabolism of cyanobacteria. The model includes the dynam-
ics of the carbon and nitrogen reservoirs, as well as the relaxation of the proteome after
the shift from day to night and vice versa. I first show that the bacterial growth laws [40],
together with the need to build a carbon and/or nitrogen reservoir, tend to generate an
extreme growth strategy, in which the cells predominantly grow during the day, as ob-
served experimentally. However, cyanobacteria grow relatively slowly, with cell-division
times that are on the order of 24 hours, which means that the relaxation of their pro-
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teome after the change from day to night and vice versa will be slow. As my results show,
this puts a severe constraint on implementing the optimal growth strategy. Interestingly,
however, their circadian clock allows these cyanobacteria to anticipate the changes be-
tween day and night, and hence start adjusting the proteome before the end of the day
and night. Indeed, my analysis reveals that anticipation not only enhances the average
growth rate, but makes it in fact possible to effectively implement the optimal growth
strategy.

In the following section, I first discuss the key concepts from information theory,
which are used throughout my thesis. I then provide an overview of my thesis, with a
more detailed discussion of the main results.

1.2. INFORMATION THEORY

One of the main goals of this thesis is to elucidate the design principles of circadian
clocks. A central performance measure is a concept from information theory. It is widely
recognized that organisms need to infer the time from the concentrations of the clock
components. This inference will be imprecise, because of the noise in the clock. We will
quantify the accuracy of information transmission via the mutual information, which is
a measure for how many distinct time states can be resolved from the concentrations of
the clock components. In this section, I will introduce the concept of mutual informa-
tion and illustrate it with some simple examples.

1.2.1. INFORMATION IN BIOCHEMICAL NETWORKS

Life depends on how much information and energy flows through biochemical networks.
Information theory is a general framework that can be applied to any stochastic system
to quantify the amount of information that is transmitted through the system. It has
been applied to a wide range of biological problems ranging from gene expression to
neural networks [31, 32, 46–62]. In this thesis we have used this theory to quantify the
amount of information that cells possess on time. Below, we introduce the key quantities
of information theory often used in the following chapters.

In statistical mechanics, it is possible to define the uncertainty in the specification of
a physical system through its entropy:

H [P (x)] =−
∫

d xP (x) logP (x) (1.1)

where P (x) is the probability that the system is in state x.
It is possible to show that in a system with N different states, the uncertainty is max-

imal when P (x) is uniform, P (x) = 1/N . We then have:

P (x) = 1/N =⇒ H [P (x)] = log N . (1.2)

We can recognize the expression above as the entropy of a micro-canonical system. The
entropies in other ensembles, including the canonical ensemble, are then obtained via a
Legendre transform. Physically, these transformations correspond to different additive
constraints on the system. For example, the canonical ensemble keeps the temperature
constant while allowing fluctuations in the energy of the microstates. In this ensemble,
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P (x) is not uniform, but follows the Maxwell-Boltzmann distribution. Therefore, there
are some states that appear more likely than others, as a result of which the uncertainty
is reduced compared with the micro-canonical case. Indeed, it is clear that the canon-
ical ensemble, compared to the micro-canonical one, contains the information about
temperature, so the uncertainty on the determination of the current state of the system
is lower.

Following this definition, in 1948 Shannon [63] has associated the uncertainty with
the maximum amount of information that can be gained from a physical system. Shan-
non’s uniqueness theorem leaves open a choice of units, for instance if we want to use
the bits, the logarithm has to be in base two.

Going more in details, given two variables, e.g. to physical degrees of freedom s and
x, it is possible to define the uncertainties for both of them, H(s) and H(x), respectively.
Thus, if these physical degrees of freedom are connected and the variables thus corre-
lated, there is a (unique) distribution of x given a fixed value of s. This probability is given
by the conditional distribution P (x|s). In turn it is possible to define the uncertainty for
the output x given the input s:

H [P (x|s)] =−
∫

d xP (x|s) logP (x|s). (1.3)

The difference between the two entropies is how much our uncertainty about x has been
reduced by knowing s. It can be interpreted as the information that we gain on the value
of x by knowing the value s:

I (x; s) = H [P (x)]−H [P (x|s)] (1.4)

The definition of mutual information between s and x is the average information that
we get from the knowledge of s on x, so Eq. 1.4 has to be averaged over P (x):

I (x; s) =
∫

d xP (x)(H [P (s)]−H [P (s|x)]). (1.5)

Calling P (s, x) the joint distribution between s and x, and using Bayes rule,

P (s, x) = P (x|s)P (s) = P (s|x)P (x), (1.6)

it is possible to show that

I (s; x) =
∫

d s
∫

d xP (s, x) log
P (s, x)

P (s)P (x)
. (1.7)

Eq.1.7 allows us to make a few points that are worthy of note:

• I (s; x) is symmetric in s and x: the information that flows from s to x is the same
that flows from x to s:

I (s; x) = I (x; s)

• If s and x are independent variables, the joint distribution factorizes:

P (s, x) = P (s)P (x)

so the information that you can gain from the knowledge of one variable to the
other is 0.
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• I (s, x) is maximized by H [P (s)] and H [P (x)]:

I (s; x) ≤ H(s), (1.8)

I (s; x) ≤ H(x) (1.9)

This means that it is not possible to reduce the uncertainty more than the intrinsic
uncertainty of the variables involved.

• It can be defined for continuous or discrete quantities.

• It is re-parametrization invariant:

I (s; x) = I (h(s); f (x)) (1.10)

This feature of mutual information is important because other statistical mea-
sures, like correlation coefficients, depend on transformations of the data.

• It obeys data processing inequality. Assuming that there are three variables where
x depends on s and k depends on x, s → x → k, the mutual information respects
the following intuitive inequalities:

I (s;k) ≤ I (x;k), (1.11)

I (s;k) ≤ I (s; x) (1.12)

Loosely speaking, in each step of a physical system’s chain, information can only
be lost.

• The mutual information between variables s and x is related to the correlation be-
tween them. Yet, the mutual information goes beyond the concept of correlation,
as elucidated in Figure 1.1. Indeed, there are cases where the mutual information
is different from 0 but the correlation is not.

1.2.2. INPUT-OUTPUT RELATION

Here I would like to present a simple application of information theory, regarding the
information that flows between an input and an output signal. We consider a physi-
cal system with some input signal s, an output signal x and some functional relation
between them, x = f (s,η) where η represents the noise in the system that corrupts the
mapping from s to x.

For simplicity, we consider the relation between s and x to be linear:

x = g s +η, (1.13)

where g is the gain. We will consider the noise to be Gaussian such that

P (η) = P (x|s) = 1p
2πσ2

e−
(x−g s)2

2σ2 (1.14)
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Figure 1.1: Mutual information between two variables s and x for different systems. In the left panel
it is seen that the two variables are linearly correlated and both the mutual information I (s; x) and
the correlation coefficient Cs,x are different from 0. In the center panel we can appreciate a case
where the mutual information is different from 0 even though the correlation between s and x is
0 (see [53]). The right panel shows a case where both the mutual information and the correlation
coefficient are 0.

The Gaussian approximation introduced above will often be used in this thesis. More-
over, let us assume that the input signal s is Gaussian with variance σ2

ss . This means that
the joint distribution p(s, x) = p(x|s)p(s) has the canonical Gaussian form:

p(s, x) = 1

2π
p|Z| exp

[
−1

2
(s x) Z−1

(
s
x

)]
(1.15)

= 1

2π
p|Z|e−

1
2|Z| (σ2

ss x2+σ2
xx s2−2σ2

sx sx), (1.16)

with Z the variance-covariance matrix

Z =
(
σ2

ss σ2
sx

σ2
sx σ2

xx

)
. (1.17)

Here, the variance of the output x is σ2
xx = σ2 + g 2σ2

ss while the covariance σ2
sx = gσ2

ss .
The determinant is given by |Z| =σ2

ssσ
2
xx −σ4

sx =σ2
ssσ

2.
For this model, the mutual information is then

I (s; x) = H(x)−H(x|s) (1.18)

= 1

2
log2

[
1+ g 2σ2

ss

σ2

]
. (1.19)

The quantity g 2σ2
ss /σ2 can be interpreted as a signal-to-noise ratio, illustrating that the

mutual information can be related to that quantity. This simple example illustrates that
the mutual information depends not only on the noise in the system, as quantified by
σ2, but also on the input-output relation, here assumed to be linear with slope (gain)
g , and the input distribution, here assumed to be Gaussian with variance σ2

ss . The mu-
tual information decreases as the noise σ2 increases, while it increases not only with the
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Figure 1.2: Linear input-output relation between two variables s and x, with gain g = 1. Clearly,
the lower the noise, the higher the mutual information.

width of the input distribution σ2
ss but also with the gain g because that helps to raise

the signal above the noise.
By noting that the correlation coefficient rsx is defined as r 2

sx ≡ σ4
sx /(σ2

ssσ
2
xx ), the

above expression can be rewritten as

I (s; x) =−1

2
log(1− r 2

sx ). (1.20)

Indeed, for a Gaussian model, the mutual information is also given by the correlation
coefficient.

Figures 1.1 and 1.2 help to develop an intuitive understanding of the mutual infor-
mation. When the input-output relation is very noisy, it is very difficult to infer from x
what s is, and vice versa, and hence the mutual information will be low. Yet, when the
noise decreases, the mapping between s and x becomes more unique and the mutual
information increases.

1.3. OVERVIEW

In chapter 2, I address the question how accurately a cell can infer the time from an
ensemble of protein oscillations, which are driven by a circadian clock. The instanta-
neous value of the oscillatory concentration of one protein does not make it possibly
to uniquely infer the time, because one concentration level can correspond to at least
two moments in time. However, this ambiguity can be resolved when the time is in-
ferred from more than one protein concentration. Interestingly, it is known that in the
cyanobacterium S. elongatus, the clock drives the expression of multiple genes, rais-
ing the question how the reliability of inferring time depends on the number of readout
proteins. By combing mathematical modelling with information theory, I show that the
accuracy increases with the number of protein oscillations and their amplitude relative
to their noise. This analysis also reveals that there exists an optimal phase relation that
minimizes the error in the estimate of time, which depends on the relative noise levels
of the protein oscillations. I also show that cross-correlations in the noise of the protein
oscillations can enhance the mutual information, which suggests that cross-regulatory
interactions between the proteins that read out the clock can be beneficial for temporal
information transmission.
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In chapter 3, I study the optimal coupling of a noisy clock to an entrainment signal
such as light or temperature. Due to internal noise, the clock will inevitably run out of
phase with the environment if it is not coupled to the driving input signal. Yet, while it
is clear that entrainment is essential, it is far less obvious how the clock should be cou-
pled to the entrainment signal: What is the optimal shape of the coupling function, i.e.
phase response curve, that maximizes the accuracy of telling time? More specifically,
why do many phase-response curves feature a so-called dead zone (a phase interval in
which the coupling strength is zero)? And how large should the coupling strength be?
Because these are very generic questions that apply to all circadian clocks, here I ad-
dress this question by studying the most generic model of a clock: a stochastic phase
oscillator that is coupled to an input signal. In this model, the clock is described by a
single phase variable that evolves as a result of 1) a fixed driving force, corresponding to
the intrinsic frequency of the clock; 2) the coupling to the input signal as characterized
by a phase-response curve; 3) a stochastic force that mimicks the internal noise aris-
ing from the stochastic nature of the chemical and physical interactions between the
clock components. The first surprising result is that the accuracy of telling time does
not monotonically increase with the coupling strength, as one might expect intuitively:
there exists an optimal coupling strength that maximizes the fidelity. The optimal cou-
pling strength does, however, increase with the noise in the system. The second result is
that the optimal intrinsic period of the clock is, in general, not equal to 24 hour: depend-
ing on the noise in the clock, it can either be larger or smaller. The third result is that the
optimal phase-response curve can, depending on the noise in the clock, exhibit a dead-
zone; this suggests that the shape of the phase-response curve has evolved to maximize
information transmission. In this chapter I also show that the optimal design of the
phase response curve can be understood as arising from a trade-off between linearity
and stability: when the clock is inherently stable, the coupling should be weak so that
the phase evolves linearly with time (this maximizes the number of distinct time points
that can be inferred), while if the clock is inherently noisy, it needs to be coupled more
strongly. Finally I show that the clock can be described by different theories—phase av-
eraging method, linear-response theory, linear-noise approximation—which each apply
in a different parameter regime.

In chapter 4, I try to answer to a very fundamental question: why do some organisms
have a circadian clock at all? Even when we accept the premise that it is beneficial for
the organism to know the time, which is not entirely obvious as discussed below, then it
is still not clear that a bonafide clock is necessary. The central idea here is that if the en-
trainment signal (e.g. light) would be very stable, there would be no need for a clock: the
stable signal could simply drive a passive system, and the oscillatory nature of the stable
signal would generate a stable oscillatory output signal of the response system, which
could then act as a clock. Indeed, the hypothesis of this project is that bonafide clocks,
which exhibit free-running rhythms, only evolve when the input signal is sufficiently
noisy (clouds, for example, make the light signal stochastic). Inspired by the different
types of clocks in cyanobacteria, I have tested this hypothesis by performing simulations
of three types of systems: 1) a push pull network; 2) an ensemble of KaiC hexamers (the
central components of the cyanobacterial clock) that are not coupled to each other and
hence cannot generate free-running oscillations, but can yield stable oscillations when
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coupled to light; 3) an ensemble of KaiC hexamers that are coupled to each other, such
that they can generate stable, free running oscillations even when they are not coupled
to light. The simulations reveal that when the input signal is stable, all three systems
yield stable oscillations from which the time can be inferred accurately. Yet, when the
input becomes very noisy, the first two systems fail to act as a reliable clock, and only the
third system makes it possible to reliably infer the time of the day from the phase of the
clock. While these results provide strong support for our hypothesis, I then developed
an analytical framework in order to understand the physical principles of these results. I
studied a Stuart-Landau model with noise in the input signal. Using the linear-noise ap-
proximation, I analytically derive the variance of the clock output, which makes it possi-
ble to compute the mutual information between the output of the system and time. This
description provides a general analysis of why a limit cycle oscillator is intrinsically more
robust to input noise than a damped oscillator.

In chapter 5, I describe the physical principles of circadian metabolism. The light-
dark rhythm drives the metabolism of many, if not most, organisms. A striking example
is provided by cyanobacteria, which exhibit photosynthesis during the day. Importantly,
to fuel the metabolic activities during the night, they need to store glycogen during the
day. Moreover, some cyanobacteria also need to store nitrogen during the night, in order
to grow during the day. It is not obvious how much they should store in order to maxi-
mize the growth rate. Moreover, it is far from clear how fast they should grow during the
day and the night so as to maximize the average growth rate over 24 hours. Inspired by
the approach developed by Hwa and coworkers [40], I have developed a coarse-grained
model of the proteome. While this model is highly coarse-grained, it does enable clear
testable predictions, concerning for example how the ribosome fraction and the growth
rate varies with the quality of the nutrient source. Moreover, while the model is applied
to the problem of storing glycogen during the day and fixing nitrogen during the night,
the results are much more generic. Indeed, this framework could, e.g., also be applied
to the scenario where the organism only builds a store during the day to fuel processes
during the night, but not the converse. The model reveals an interesting growth strat-
egy, which at least some cyanobacteria seem to pursue: when, by storing more nitrogen
during the night, the benefit of growing faster during the day outweighs the cost of grow-
ing slower during the night, then the optimal strategy is to hardly grow at all during the
night: this enhances the growth rate during the day so that the average growth rate over
24 hours is maximized. The model also makes it possible to address another question:
when is it advantageous to know the time? The hypothesis here is that it becomes vital to
know the time only when the response of the system to a change in the environment (i.e.
day- night) is slow: if it were fast, it could simply respond and adapt, but if it is slow the
organism must anticipate the change and mount a response before the change occurs.
To address this question, I first show that in the absence of active protein degradation,
the time-scale for adjusting the proteome is set by the growth rate. The proteome relax-
ation time is thus given by the cell division time, which is often on the order of the clock
period (24 hrs). This means that proteome relaxation is slow, which means that antici-
pation becomes important. I then show that the average growth rate is indeed strongly
enhanced when the cells exploit their knowledge of time and mount a response before
the change from day to night (and vice-versa) occurs. This is arguably the first modelling
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result that shows that cells can grow faster by anticipating the daily changes in their en-
vironment.





2
THE ACCURACY OF TELLING TIME

VIA OSCILLATORY SIGNALS

ABSTRACT

Circadian clocks are the central timekeepers of life, allowing cells to anticipate changes
between day and night. Experiments in recent years have revealed that circadian clocks
can be highly stable, raising the question how reliably they can be read out. Here, we
combine mathematical modelling with information theory to address the question how
accurately a cell can infer the time from an ensemble of protein oscillations, which are
driven by a circadian clock. We show that the precision increases with the number of
oscillations and their amplitude relative to their noise. Our analysis also reveals that their
exists an optimal phase relation that minimizes the error in the estimate of time, which
depends on the relative noise levels of the protein oscillations. Lastly, our work shows
that cross-correlations in the noise of the protein oscillations can enhance the mutual
information, which suggests that cross-regulatory interactions between the proteins that
read out the clock can be beneficial for temporal information transmission.

INTRODUCTION

Among the most fascinating timing devices in biology are circadian clocks, which are
found in organisms ranging from cyanobacteria and fungi, to plants, insects and ani-
mals. Circadian clocks are biochemical oscillators that allow organisms to coordinate
their behaviour with the 24-hour cycle of day and night. Remarkably, these clocks can
maintain stable rhythms for months or even years in the absence of any daily cue from
the environment, such as light/dark or temperature cycles [64]. In multicellular organ-
isms, the robustness can be explained by intercellular interactions [65, 66], but it is now
known that even unicellular organisms can have very stable rhythms. An excellent ex-
ample is provided by the clock of the bacterium Synechococcus elongatus, which is one
of the most studied and best characterized model systems [64]. This clock has a corre-
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lation time of several months [67], even though the clocks of the different cells in the
population do not seem to interact with one another [67]. Clearly, the clock is designed
in such a way that it has become resilient against the intrinsic stochasticity of the chem-
ical reactions that constitute the clock [15, 28]. The observation that clocks can be very
stable, suggests that they are also read out reliably. Yet, how cells could do so is a wide
open question [68].

In this manuscript we combine information theory with mathematical modelling to
study how accurately cells can infer time from cellular oscillators. While our analysis
is general, it is inspired by the circadian clock of S. elongatus. The central clock com-
ponent of S. elongatus is KaiC, which forms a hexamer [69]. KaiC has two phosphory-
lation sites per monomer, which are phosphorylated and dephosphorylated in a well-
defined temporal order, yielding a protein-phosphorylation cycle (PPC) with a 24 hour
period [12, 70]. This PPC is coupled to a transcription-translation cycle (TTC) of KaiC
[71], which is a protein synthesis cycle with a 24 hr rhythm, via the response regulator
RpaA. KaiC in the phosphorylation phase of the PPC activates the histidine kinase SasA,
which in turn activates RpaA via phosphorylation [72–75]. In contrast, KaiC that is in
the dephosphorylation phase of the PPC and bound to KaiB, activates the phosphatase
CikA, which dephosphorylates and deactivates RpaA [74, 75]. Active, phosphorylated
RpaA drives genome-wide transcriptional rhythms, which include the expression of the
clock components [76].

Intriguingly, while time could be uniquely encoded in the modification state of the
two phosphorylation sites of KaiC, cells do not seem to employ this mechanism [75, 76].
RpaA, the central node between the clock and the downstream genes, has only one phos-
phorylation site [75, 76]. This makes the question how accurately the cell can infer time
a very pertinent one, because a single readout—the phoshorylation level of RpaA—leads
to an inherent ambiguity in the mapping between time and clock output: a given level
of active RpaA corresponds to two possible times (see Fig. 2.1). On the other hand,
it is known that RpaA controls the expression of many downstream genes [76]. While
their expression levels cannot contain more information about time than that which is
available in the time trace of RpaA, it is possible that, collectively, their expression levels
do contain more information about time than that present in the instantaneous level of
RpaA.

In this manuscript, we study how the accuracy of telling time depends on the number
of genes that read out a clock, their phase difference, the level of biochemical noise, and
the cross-correlations between the gene expression levels. In the next section, we first
describe the set up of our analysis, and then the measures that we employ to quantify
information transmission. We then show that there exists an optimal phase difference
that maximizes information transmission. Interestingly, the optimal phase difference
depends on the amplitude of the noise in the expression of the readout genes, and on
the cross-correlations between them, akin to what has been observed in neuronal coding
[52] and in the gap-gene expression system of Drosophila [53, 56].
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Figure 2.1: Cells can infer time from an ensemble of protein oscillations. The day-night rhythm
entrains a circadian clock, a biochemical oscillator with a 24 hours period, which in turn drives
the oscillatory expression of a number of readout genes. P (x|t ) (orange) is the conditional dis-
tribution of the protein concentration x given the time t , with σx its standard deviation. P (t |y)
(red) is the conditional distribution of the time t given the protein concentration y ; importantly,
this distribution is bi-modal, reflecting the idea that even for a perfect, deterministic, noise-free
signal, a given concentration y maps onto 2 different time points, causing an inherent ambiguity
in telling the time. This ambiguity can be lifted by using two proteins to tell time, as illustrated
by P (t |x, y), which is the conditional probability of t given the protein concentrations x and y ,
respectively. This distribution is uni-modal, meaning that the time, in the absence of noise, can
be inferred uniquely. The standard deviation σt of this distribution is the error in the estimate
of time, as indicated. The error depends on the amplitude of the oscillations, Ax and Ay , their

variance σ2
x , σ2

y , their co-variance σ2
x,y , and their phase shift ∆φ=φx −φy .

2.1. METHODS

2.1.1. MODEL

The analysis we present below applies to any readout system that obeys Gaussian statis-
tics. Yet, to set the stage, and to introduce the key quantities that we will study, it is
instructive to consider a concrete system. To this end, imagine an oscillatory clock pro-
tein, like RpaA, that drives the expression of a set of downstream genes. Assuming that
the system can be linearized, the dynamics of the system is given by

dx(t )

d t
= fs(t )+Bx(t )+ξ(t ). (2.1)

Here x(t ) is a vector with components xi (t ), which denote the concentration xi of protein
Xi , s(t ) is the concentration of the clock protein, f is a vector with components fi , which
describe how the downstream protein Xi is driven by s(t ), B is the matrix that describes
the regulatory interactions between the downstream proteins, and ξ(t ) is a vector with
components ξi (t ) that describe the noise in the expression of Xi . In what follows, we
imagine that the clock protein oscillates according to s(t ) = As sin(ωt )+rs +ξs , where As

sets the amplitude of the oscillations, rs its mean, and ξs describes the noise in the input
signal.
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This linear system can be solved analytically. For example, if the downstream genes
do not interact with each other and protein Xi decays with rate µi , then each protein
oscillates as

xi (t ) = Ai sin(ωt +φi )+ ri +ηi (t ), (2.2)

where

ηi (t ) =
∫ t

−∞
d t ′e−µi (t−t ′) [ξi (t ′)+ fiξs (t ′)

]
, (2.3)

Ai = fi As√
µ2

i +ω2
, (2.4)

φi = arcsin(
−ω√
µ2

i +ω2
), (2.5)

ri = fi rs

µi
. (2.6)

Importantly, even in this simple system, the difference in the phase φ between the ex-
pression of the downstream genes can be modulated, namely by changing the protein
degradation rate µi . Also the amplitude Ai can be adjusted; it can be set independently
from the phase via the synthesis rate fi . Both quantities affect the precision by which the
system can estimate the time.

Another key quantity is the noise in the expression of the downstream genes. Follow-
ing the linear-noise approximation, we assume that the noise in the concentration xi is
Gaussian, such that

P (ηi ) = P (xi |t∗) = 1√
2πσ2

i

e
− (xi −x̄i (t∗))2

2σ2
i (2.7)

where x̄i (t∗) is the mean concentration of protein Xi at time t∗, σ2
i = σ2

i (t∗) is the vari-
ance of xi around its mean x̄i , and t∗ is the given time. The noise σ2

i (t ) has an extrinsic
contribution coming from the noise in the input signal, an intrinsic contribution from
the noise in the expression of Xi , and a contribution from the regulatory interactions.
Our analysis does not depend on the precise origins of these noise contributions: in the
analysis below, we specify the variance σ2

i (t ) and the co-variance of the fluctuations in
xi and x j , and then study how this affects the precision of telling time. Yet, in general,
we expect thatσ2

i (t ) depends on the mean x̄i (t ). If gene expression can be modelled as a
Poissonian birth-death process, then σi (t ) =p

x̄i (t ); if, however, the noise in xi is domi-
nated by the noise in the input signal, the regulatory interactions, or by the noise in the
promoter state, then σi (t ) ' x̄i (t ) [77]. On the other hand, if the mean ri of the protein
oscillations is large compared to their amplitude Ai , then we may assume that σ2

i (t ) is
constant in time, σ2

i (t ) = σ2
i . The value of σ2

i will depend on ri , and hence xi (t ). But
howσ2

i depends on xi is, in this scenario, relevant only to the extent that the precision of
telling time depends onσi —the control variable isσi , not ri itself. In the next section, we
thus discuss three scenarios: 1) σi (t ) 'p

x̄i (t ); 2) σi (t ) ' x̄i (t ); 3) σ2
i (t ) =σ2

i = constant;
for simplicity, we assume here that σi = p

ri , but different systems will give identical
results as long as Ai and σi are the same.
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As will become clear in the next section, the importance of noise depends on the
amplitude of the oscillations: the key control parameter is the relative noise strength
σ̃i ≡ Ai /σi . This ratio can be varied independently from gene to gene, Ai /σi 6= A j /σ j

in general, and below we will study how this affects the precision. If there is no noise in
the input s(t ) and if the downstream proteins do not interact with each other (as in the
example considered here), then the cross-correlation between the fluctuations of the
concentrations of the downstream proteins is zero: 〈ηiη j 〉 = 〈η2

i 〉δi j = σ2
i , where δi j is

the Kronecker delta. However, in general, the noise in the expression of the downstream
genes will be correlated, which, as we will show, can either enhance or reduce the accu-
racy by which the downstream proteins can infer time.

Below, we will consider how the accuracy of telling time depends on the cross-correlations
between the expression of the downstream genes, their phase difference, and on σ̃i , and
how this varies from gene to gene.

2.1.2. RELIABILITY MEASURES

The central idea of our analysis is that the system infers the time from the collective ex-
pression of the N downstream proteins, {xi } ≡ {x1(t ), x2(t ), . . . , xN−1(t ), xN (t )}. Following
work on positional information in Drosophila [56], we use two approaches to quantify
the accuracy on telling time. The first is based on the error in the estimate of a given
time t , σt (t ); a related approach has been widely used to derive the fundamental lim-
its on the accuracy of sensing [31, 78–92]. The second approach is based on the mutual
information, which in recent years has been used extensively to quantify cellular infor-
mation transmission [31, 32, 46–61].

THE ERROR IN ESTIMATING TIME

To determine the error in estimating the time, we start from the generalization of Eq. 2.7
to multiple downstream genes:

P ({xi }|t ) = 1p
2π|C| exp

[
−1

2

N∑
i , j
δxi C−1

i j δx j

]
. (2.8)

Here δxi (t ) = xi (t )− x̄i (t ), C is the covariance matrix with elements Ci j , |C| is its deter-
minant and C−1 is its inverse.

The idea is now to invert the problem, and ask what is the distribution of possible
times t , given that the expression levels are {xi }. This can be obtained from Bayes’ rule:

P (t |{xi }) = P (t )
P ({xi }|t )

P ({xi })
(2.9)

where P (t ) = 1
T is the uniform prior probability of having a certain time and P ({xi }) is

the joint distribution of the expression levels of the downstream genes. If the noise η is
small compared to the mean, then P (t |{xi }) will be a Gaussian distribution that is peaked
around t∗({xi }), which is the best estimate of the time given the expression levels [56, 93]:

P (t |{xi }) ' 1√
2πσ2

t

exp

[
− (t − t∗({xi }))2

2σ2
t

]
. (2.10)



2

18 2. THE ACCURACY OF TELLING TIME VIA OSCILLATORY SIGNALS

Here σ2
t =σ2

t (t∗) is the variance in the estimate of the time, and it is given by [56]

σ−2
t '

N∑
i , j

[
d x̄i (t )

d t
C−1

i j

d x̄ j (t )

d t

]∣∣∣∣
t=t∗({xk })

(2.11)

We first consider the scenario in which the noise in the expression of the downstream
genes, ηi , is uncorrelated from one gene to the next. In this case C is a diagonal matrix
where the diagonal elements are the variances of the respective protein concentrations:
Ci i =σ2

i . Substituting Ci i and Eq 2.2 in Eq 2.11 we find that

σ−2
t (t ) =ω2

N∑
i=1

(Ai /σi )2 cos2(ωt +φi ). (2.12)

Clearly, the accuracy of telling time depends on the relative noise strength, i.e. the stan-
dard deviation σi divided by the amplitude Ai , of the respective genes, the frequency ω
of the oscillations, and the phase difference between the different oscillations. It also de-
pends on time, which means that the precision with which the time can be determined,
depends on the moment of the day. The average error in the estimate, σt (t ) averaged
over the oscillation period T , is

〈σt 〉 =
∫ T

0
P (t )σt (t )d t (2.13)

= 1

T

∫
d t


√√√√ω2

N∑
i

(Ai /σi )2 cos2(ωt +φi )

−1

(2.14)

It is not possible to solve this analytically, and below we have optimized 〈σt 〉numerically.
It is also of interest to know how much the error is constant as a function of time. To this
end, we compute

(δσt )2 =
∫ T

0
P (t )(σt (t )−〈σt 〉)2d t (2.15)

In the next section, we will systematically study the dependence of σt on σi (t ), Ai , and
φi . We will not vary ω, which is fixed by the 24 hr rhythm of the circadian clock. We
thus do not study the dependence on ω, except to note that, in general, the error in
the estimate of time decreases as ω increases (see Eq. 2.12) because a higher frequency
causes steeper oscillations, which means that an error in the estimate of x will propagate
less strongly to the error in the estimate of time, σt .

With cross-correlations in the expressions of the downstream genes, the off-diagonal
terms of C will be non zero, which leads to additional terms in the expression for σ2

t .
Rather than giving the generic expression, we show the more informative expression for
N = 2, with x1(t ) = x(t ) = Ax sin(ωt ) and x2(t ) = y(t ) = Ay sin(ωt +φ). The covariance
matrix, which is symmetric and semi-definite positive, is defined as

C =
(

σ2
x covx y

covx y σ2
y

)
(2.16)
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which yields for its inverse

C−1 = 1

|C|
(

σ2
y −covx y

−covx y σ2
x

)
, (2.17)

where the determinant is |C| = (σ2
xσ

2
y −cov2

x y ). Combining this with Eq. 2.11 yields:

σ−2
t (t ) = 1

|C|
[
σ2

y A2
x cos2(ωt )

−2covx y Ax Ay cos(ωt +φ)cos(ωt )

+σ2
x A2

y cos2(ωt +φ)
]

. (2.18)

This expression reduces to that of Eq. 2.12 when the co-variance is zero. However, in
general, the error on telling time depends on the co-variance of the fluctuations in the
expression of gene x and gene y .

The quantity σt (t ) is a local quantity in that it provides the error in estimating the
time as a function of the time of the day. This quantity can be useful when certain mo-
ments of the day have to be determined with higher precision than others. In the next
section, we discuss another quantity, the mutual information, which makes it possible
to determine how many distinct moments in time can be specified.

MUTUAL INFORMATION

The mutual information quantifies how many different input states can be propagated
uniquely [63]. In this context, it is defined as

I ({xi }; t ) =
∫

dxd tP ({xi }, t ) log
P ({xi }, t )

P ({xi })P (t )
. (2.19)

The mutual information measures the reduction in uncertainty about t upon measuring
{xi }, or vice versa. The quantity is indeed symmetric in {xi } and t :

I (x, y ; t ) = H(x, y)−〈H(x, y |t )〉t (2.20)

= H(t )−〈H(t |x, y)〉x,y (2.21)

where H(a) = −∫
d aP (a) lnP (a), with P (a) the probability distribution of a, is the en-

tropy of variable a; H(a,b|c) =−∫
d a

∫
dbP (a,b|c) lnP (a,b|c) is the information entropy

of a,b given c, with P (a,b|c) the conditional probability distribution of a and b given c,
and 〈 f (c)〉c denotes an average of f (c) over the distribution P (c). In our context, Eq.
2.21 is perhaps the most natural expression, since it quantifies how accurately the cell
can infer the time of the day t from the expression of x and y .

The mutual information is a global quantity, which in contrast to σt (t ), does not
make it possible to quantify how accurately a given moment in time can be specified.
The latter could be useful when the system needs to change, e.g., its metabolic program
at a well-defined moment in time. On the other hand, the mutual information does al-
low us to quantify how many different moments in time can be specified, and thus how
many temporal decisions the organism could make. As Eq. 2.20 shows, the magnitude
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of the mutual information depends on both H(x, y) and 〈H(x, y |t〉t . As we will show
below, cross correlations between the expression of the downstream genes x and y will
modify P (x, y), reducing its entropy; this tends to reduce information transmission. Yet,
cross-correlations can also decrease 〈H(x, y |t )〉t , meaning that, on average, the distri-
bution of expression levels x and y for a given time t is more narrow—a given time t
then maps more uniquely onto an expression pattern x, y ; this tends to increase the mu-
tual information. The balance between these two opposing factors determines the cross
correlations that maximize information transmission.

2.2. RESULTS

2.2.1. NO CROSS-CORRELATIONS

In this section, we consider the scenario in which there are no cross correlations between
the noise in the expression of the downstream genes. We first study the case in which the
relative noise strength, σ̃i ≡ σi /Ai = σ̃x , is the same for all genes i ; in this scenario, we
use the subscript x to remind ourselves that we are considering the standard deviation
in x and not in the estimate of time. We will also first assume that σx (t ) =σx is constant
in time, depending only on the mean of x, i.e rx , but not its mean instantaneous level
x̄(t ). The latter is reasonable when the amplitude of the oscillations is small compared
to the mean.

To determine the optimal phase relation that minimizes the average error in telling
time, given by Eq. 2.14, we solve

d〈σt 〉
d∆φi

= 0 i = 1...N , (2.22)

where ∆φi =φi −φ1. Setting the phase of the first oscillation to zero, i.e. φ1 = 0, we find
that the optimal phase relation that minimizes the average error is given by

∆φi = (i −1)
π

N
i = 1...N . (2.23)

Clearly, in the optimal system the phases of the downstream oscillations are evenly spaced
when σ̃x is the same for all genes, and σx is constant in time.

The next question is what is the phase relation that minimizes the variance of σt (t )
over the oscillation period T , i.e. minimizes Eq. 2.15. In the appendix we show that the
solution is also given by Eq. 2.23. Hence, the phase relation that minimizes the average
error on telling time, 〈σt 〉, is also the phase relation that minimizes the variance ofσt (t ).
Thus, in the optimal system, the phases are evenly spaced; this not only minimizes the
average error in telling time, but it also yields the same accuracy for all times t . Moreover,
for this optimal system, the average error, obtained from Eq. 2.12, is given by

〈σt 〉 = σ̃x T

2π

√
2

N
(2.24)

This shows that the average error is proportional to the relative noise strength σ̃x =σx /A
and inversely proportional to the square root of the number of readout genes, N .
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Figure 2.2: Estimating time via N = 2 readout-protein oscillations, which have the same relative
noise strength σ̃x =σx /A. Here A is the amplitude of the oscillations andσx is the noise in the os-
cillations, which is here assumed to be constant in time, and given by the mean of the oscillations,
r , taken to be the same for both oscillations; there are also no cross correlations. (A) The error in
the estimate of time σt (t ) as a function of time t , for different phase differences ∆φ between the
two oscillations. Note that for∆φ=π/2, the errorσt (t ) is constant in time. (B) The variance (δσt )2

in the estimate of time as a function of ∆φ, for different relative noise strengths σ̃x . As expected
from panel A, (δσt )2 = 0 for ∆φ = π/2. (C) The mean error 〈σt 〉 as a function of ∆φ, for different
relative noise strengths σ̃x . The error is proportional to σ̃x , in accordance with Eq. 2.24. Note also
that the mean error is minimized at ∆φ=π/2, although the dependence on ∆φ near the optimum
is weak. (D) The mutual information I (x, y ; t ) between the two protein oscillations x(t ), y(t ) and
time t , for different relative noise strengths σ̃x . The mutual information increases with decreasing
σ̃x , and is optimized at ∆φ = π/2. Note also that the dependence of I (x, y ; t ) on ∆φ is stronger
than that of 〈σt 〉 (panel C).
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These results are illustrated in Figs. 2.2A-C, for N = 2. Panel A shows σt (t ) as a func-
tion of t , for different phase relations ∆φ ≡ φ2 −φ1. It is seen that, in general, σt (t ),
depends on t . However, when ∆φ = π/2, then σt (t ) is independent of t . Panel B shows
that for this phase relation, the variance (δσt )2 is indeed zero, while panel C shows that
in this case also the average error is minimal, in accordance with the theoretical analysis.

Lastly, Fig. 2.2D shows the mutual information I (x, y ; t ), obtained numerically, as a
function of the phase shift, for different noise levels. As expected, the mutual informa-
tion increases as the relative noise strength σ̃x decreases. Moreover, the phase relation
that minimizes the average error, 〈σt 〉, is also the phase relation that maximizes the mu-
tual information.

When the noise amplitudeσx depends on the mean instantaneous copy number x̄(t )
(rather than its mean averaged over the oscillation period), the noise in the output σx (t )
varies in time. We first assume thatσx (t ) 'p

x̄(t ), and consider as above the case that the
amplitude and the mean of the oscillations are the same for all genes, respectively: Ai =
A j = ·· · = A and ri = r j = ·· · = rx . Our analysis described in the appendix reveals that the
optimal phase relation that maximizes the mutual information and minimizes both the
variance (δσt )2 and the mean 〈σt 〉 of the error, is again given by Eq. 2.23. However, the
minimal variance, obtained for the optimal phase relation, only reduces to zero in the
limit that r →∞; in this limit, the noise σx (t ) becomes constant in time and we recover
the case discussed above. Interestingly, the average error 〈σt 〉 is larger than that in the
case of constant relative noise strength, even when the average relative noise strength
is the same. We have also studied the case in which σx (t ) = x(t ). In this scenario the
average noise is higher, which decreases the precision and the mutual information. Yet,
qualitatively the results do not change. Specifically, the same optimal phase relation is
obtained.

When N = 2 yet the relative noise strength is not the same for both genes, σ̃x 6= σ̃y ,
the optimal phase shift that minimizes the error and maximizes the mutual information
is again ∆φx y = π/2; indeed, this result, for N = 2, does not depend on whether σ̃ is
the same for both genes. Also the variance (δσt )2 is zero for this optimal phase shift, as
before.

These results change markedly when the relative noise strength is not the same for
all genes and N > 2. Then the optimal phase shift depends in a non-trivial manner on
{σ̃i }. The principle is that the oscillations that contain more information about time be-
cause they are less noisy, should be spaced further apart. More specifically, the spacing
between them should be closer to that which maximizes the mutual information be-
tween them and time. This principle is illustrated in Fig. 2.3A-B for three genes, where
σ̃x = σ̃y ≡ σ̃x,y < σ̃z . Clearly, the oscillations of proteins X and Y contain more informa-
tion about time than the oscillation of protein Z. As a consequence, the phase difference
between x(t ) and y(t ), ∆φx y =φy −φx , is more important in accurately telling time than
that between the two other pairs of oscillations. The phase difference ∆φx y is there-
fore closer to π/2, the phase difference that maximizes I (x, y ; t ), than those of the other
pairs of genes. Indeed, the extent to which∆φx y approaches π/2 depends on σ̃x,y /σ̃z , as
Fig. 2.3B shows: when σ̃x,y = σ̃z , all oscillations are equally informative and hence the
oscillations are evenly spaced, yielding ∆φx y = ∆φy z = ∆φzx = π/3. In contrast, when
σ̃x,y /σ̃z = 0, ∆φx y = π/2, the same result that would have been obtained if these two
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genes were the only ones present. In this limit, σ̃z is infinite, and z carries no informa-
tion on time, making its phase irrelevant. Fig. 2.3C gives the mean error 〈σt 〉 and Fig.
2.3D the mutual information I (x, y, z; t ) for the optimal phase relation shown in panel B,
as a function of σ̃x y /σ̃z . Here, in varying σ̃x y /σ̃z , σ̃x y is kept constant while σ̃z is varied
between σ̃x y and infinity. These panels thus show the gain in employing an additional
readout protein in accurately telling time, as a function of its noise level. The results in-
terpolate between those for N = 2 equally informative genes when σ̃x y /σ̃z = 0, and those
for N = 3 equally informative genes when σ̃x y /σ̃z = 1.
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Figure 2.3: Estimating time via N = 3 readout-protein oscillations, where the relative noise
strength σ̃i ≡ σi /Ai of two oscillations is the same, σ̃x = σ̃y ≡ σ̃x,y = 0.3, and different from that
of the third oscillation, σ̃z . The noise σi is assumed to be constant in time, and there are no cross
correlations in the noise. (A) Sketch of the set up, with two reliable oscillations x(t ) and y(t ) and a
third, more noisy oscillation z(t ). (B) The optimal phase relation that maximizes the mutual infor-
mation I (x, y, z; t ) and minimizes the mean error 〈σt 〉, as a function of σ̃x,y /σ̃z ; here, and in panels
C-D, σ̃x,y = 0.3 is kept constant while σ̃z is varied. When σ̃x,y /σ̃z = 0, the third gene z(t ) carries
no information, and the optimal phase difference ∆φx y = φy −φx between the oscillations of x
and y is ∆φx y = π/2, the result for N = 2 oscillations; in this limit, the phase of z is irrelevant and
its optimal phase is thus undetermined, as indicated by the open circle. As σ̃x,y /σ̃z increases, the
third oscillation z(t ) becomes more important. The phase difference ∆φx y between x(t ) and y(t )
decreases, while the phase difference∆φy z between y(t ) and z(t ) increases. When σ̃x,y /σ̃z = 1, all
genes are equally informative and ∆φx y =∆φy z =∆φzx =π/3. (C) The mean error 〈σt 〉 as a func-
tion σ̃x,y /σ̃z . It decreases as the third gene becomes more informative. (D) The mutual I (x, y, z; t )
increases with σ̃x,y /σ̃z .
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Figure 2.4: The importance of cross correlations between the fluctuations in the oscillations of
the readout proteins, illustrated here for N = 2 readout proteins. The top row shows results for the
scenario in which the relative noise strength σ̃i ≡σi /Ai is low, while the bottom panel displays the
results for when it is large. In all cases, the relative noise strength of the two oscillations is taken to
be the same, σ̃x = σ̃y = σ̃x,y = 0.3. The panels in the left column show a heat map of the mutual in-
formation I (x, y ; t ) as a function of the phase difference∆φ=φy −φx between the two oscillations,
and the correlation coefficient b. Due to the symmetry of the problem the mutual information is
symmetric: I (x, y ; t )∆φ,b = I (x, y ; t )π−∆φ,−b . The top-left panel shows that when the relative noise
strength is low, the mutual information is maximized for |b| → 1 and ∆φ 6=π/2. Cross correlations
thus change the optimal phase difference, and more, importantly, they can enhance the mutual
information. However, when the relative noise is large, the cross correlations become less im-
portant and the optimal phase difference approaches ∆φ = π/2 (bottom left panel). The middle
panels elucidate how cross correlations can affect the mutual information. Shown are, for different
points in the heat map on the left, the average trajectory that x(t ) and y(t ) trace out during a 24 hr
period (green solid line), with superimposed, for different times of the day, scatter points of x(t )
and y(t ), originating from gene expression noise. The main axis of the contour x̄(t ), ȳ(t ) is deter-
mined by the phase difference ∆φ, while the main axis of the noise (scatter points) is determined
by the correlation coefficient b. There are moments of the day where cross correlations cause the
distributions P (x, y |t ) of neighbouring times t to overlap less, thus increasing mutual information,
but also moments where they increase the overlap, decreasing the mutual information. The net
benefit depends on how these contributions are weighted. The system spends more time near the
extrema of x̄(t ), ȳ(t ), as illustrated in the right panels. Consequently, when ∆φ<π/2, positive cor-
relations b > 0 enhance the mutual information, especially when the relative noise strength σ̃x is
low (point B top row). At higher noise (bottom row), cross correlations are less effective in reducing
the overlap in P (x, y |t ) and the phase difference ∆φ becomes the dominant control parameter.
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2.2.2. THE IMPORTANCE OF CROSS-CORRELATIONS

So far we have assumed that the noise in the expression of the downstream genes is un-
correlated. However, in general, we expect their noise to be correlated. Direct or indirect
regulatory interactions between the genes can lead to correlations or anti-correlations
in the fluctuations of the protein concentrations [53]. And also noise in the input signal
can lead to correlated gene expression. In fact, the extrinsic contribution to the noise in
gene expression is often larger than the intrinsic one [94], which can induce pronounced
correlations between the expression of the downstream genes. Intuitively, we may think
that if we need to infer an input variable t from two output variables x and y , then cross-
correlations between x and y reduce the accuracy of the estimate—asking two persons
x and y a question about t seems to give more information when x and y give indepen-
dent answers. However, this intuition is not always correct, as will become clear. Indeed,
in this section we study how correlations between the expression of downstream genes
affect the precision by which cells can tell time.
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Figure 2.5: Importance of cross correlations in reducing the error in estimating the time, as esti-
mated from N = 2 protein oscillations. Heat maps of the the variance in the error (δσt )2 (A) and
the mean error 〈σt 〉 (B), as a function of the phase difference ∆φ between the two oscillations and
the correlation coefficient b of the fluctuations in the oscillations. The relative noise strength σ̃x
is the same for both oscillations, and equal to that of the low-noise scenario in Fig. 2.4, σ̃x = 0.03.
It is seen that cross correlations can reduce the mean error. Comparing against the top-left panel
of Fig. 2.4 shows, however, that the positions of the optima are different for the two quantities, the
mean error 〈σt 〉 and the mutual information I (x, y ; t ) , respectively. This is because the quanti-
ties σt (t ) (Eq. 2.14) and H(t |x, y) (Eq. 2.26) are averaged over different distributions, the uniform
distribution P (t ) and the non-uniform distribution P (x, y), respectively.

In order to dissect the effect of cross-correlations, we study two downstream genes,
N = 2, and take both the amplitudes of their oscillations and their expression noise to be
equal: Ax = Ay = A,σx =σy =σx,y , respectively. Using the latter, we can renormalise the
covariance matrix Eq. 2.16:

C =
(

σx covx y

covx y σy

)
=σx,y

(
1 b
b 1

)
, (2.25)

where b is the correlation coefficient, denoting the cross-correlation strength: b = 1 im-
plies that the noise in the expression of X and Y is fully correlated, while b =−1 implies
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full anti-correlation. We computed numerically how I (x, y ; t ), 〈σt 〉t and (δt )2 depend on
the phase shift ∆φ = φy −φx , the relative noise strength σ̃x,y = σx,y /A, and the correla-
tion coefficient b.

Fig. 2.4 shows the mutual information I (x, y ; t ) as a function of∆φ and b, both for low
noise, with σ̃x,y = 0.03 (panels top row), and high noise, with σ̃x,y = 0.4 (panels bottom
row). The following points are worthy of note. First, as expected, I (x, y ; t ) is symmetric
with respect to ∆φ and b: I (x, y ; t )∆φ,b = I (x, y ; t )2π−∆φ,−b . Secondly, depending on the
phase shift ∆φ, correlations (b > 0) or anti-correlations (b < 0) can enhance the mutual
information, especially when the relative noise strength σ̃x,y is low (top panel). Con-
comitantly, the optimal phase shift ∆φ that maximizes the mutual information depends
on the cross correlation b. At low noise, the mutual information is maximized either at
0 < ∆φ∗ < π/2 and b ≈ 1 or at π−∆φ∗ and b ≈ −1. At high noise, cross correlations no
longer help to improve the mutual information (bottom panel). Moreover, the optimal
phase shift is at ∆φ∗ ≈π/2. We now discuss the origin of these observations.

To elucidate these observations, we start from the definition of the mutual informa-
tion (see Eq. 2.21):

I (x, y ; t ) = H(t )−〈H(t |x, y)〉x,y (2.26)

Here, H(t ) is the entropy of the input signal, with P (t ) = 1/T . It does not depend on the
design of the downstream readout system. In contrast, the second term, 〈H(t |x, y)〉x,y ,
does depend on it. We now describe how changing ∆φ and b affects this term, using the
scatter plots and distributions in the middle and right column of Fig. 2.4.

The middle panel shows for different combinations of b and ∆φ, corresponding to
the points A,B,C,D in the heat map of I (x, y ; t ) (left panel), scatter plots of x(t ) and y(t ).
The overall shape of each scatter plot is determined by the phase difference ∆φ. When
∆φ= π/2 (points C and D), the average expression levels x̄(t ) and ȳ(t ) trace out a circle
in state space during a 24 hr period, while when ∆φ = π/4 (points A and B), they carve
out an ellipsoidal path; these mean paths are indicated by thin solid green lines in the
scatter plots. For each moment of the day, however, x and y will exhibit a distribution
of expression levels, due to gene expression noise. This distribution P (x, y |t ) is shown as
scatter points (x, y) for different yet evenly spaced times t in the respective sub-panels.
When the main axis of P (x, y |t ) is perpendicular to the local tangent of the mean path
of x̄(t ), ȳ(t ), then cross correlations reduce H(t |x, y) for that period of the day: the cross
correlations cause the distributions P (x, y |t ) for neighbouring times t to overlap less,
meaning that a given point (x, y) maps more uniquely onto a given time t . This tends to
increase the mutual information. However, as the middle panel illustrates, there are not
only moments of the day when the main axis of the scatter points is perpendicular to the
local tangent of the mean path, but also times when they are parallel, in which case cross
correlations are detrimental. Whether the net result of cross correlations is beneficial,
depends on how these different contributions are weighted: H(t |x, y) has to be averaged
over P (x, y), see Eq. 2.26. When ∆φ = π/2, the mean path x̄(t ), ȳ(t ) is circular, yet the
net effect of correlations on the mutual information is already positive (left panel), and
independent of the sign of b. For∆φ 6=π/2, the effect depends on the sign of b. Moreover,
as the right panel illustrates, the effect is also stronger, since the system spends more
time near the extrema of x̄(t ), ȳ(t ) (this is because oscillatory signals spend, in general,
more time near their extrema).
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When ∆φ < π/2, positive correlations in the expression of x and y (b > 0) cause the
main axis of P (x, y |t ) to be perpendicular to the local tangent of x̄(t ), ȳ(t ) near the ex-
trema (point B), thus increasing the mutual information, while anti-correlations (b < 0)
cause P (x, y |t ) to be parallel to it (point A), decreasing the mutual information. For
∆φ → ∆φ−π/2 precisely the opposite behaviour is observed, because the mean path
of x̄(t ), ȳ(t ) (the ellipse) is flipped vertically. The principal observation is thus that cross-
correlations can enhance the mutual information by allowing for a less overlapping tiling
of state space, and hence a less redundant mapping between the input t and output
(x, y).

For higher noise (panels in lower row of Fig. 2.4), each P (x, y |t ) becomes wider,
which means that the benefit of introducing cross correlations in reducing the overlap
between different P (x, y |t ) (corresponding to different times t ), decreases. Indeed, at
higher noise, the mutual information depends much more weakly on the magnitude of
the cross correlations (left panel bottom row). The key control parameter is now the
phase shift ∆φ. For ∆φ = π/2, the distributions P (x, y |t ) are most evenly spaced. This
minimizes the overlap between them and maximizes the mutual information.

Fig. 2.5 shows the the variance in the error, (δt )2, and the average error in telling
time, 〈σt 〉, as a function of ∆φ and b, for σ̃ = 0.03 (as in the top row of Fig. 2.4). It is
seen that increasing correlations |b| can reduce the average error. Surprisingly, however,
for |b| ≈ 1, the average error 〈σt 〉 is minimized at a phase shift that does not maximize
the mutual information, as a comparison with Fig. 2.4 shows. This is because of how
the respective quantities are averaged. The quantity σt (t ) is averaged over P (t ), which
is uniform in time, while H(t |x, y) is averaged over P (x, y), which gives more weight to
those points (x, y) that are more probable.

To illustrate the importance of cross-correlations in enhancing information trans-
mission, we have focussed here on the case N = 2. However, also for N > 2, cross-
correlations can increase the precision of telling time, by minimizing the overlap in the
conditional distributions P (x, y |t ).

2.3. DISCUSSION

Our results show that the precision of estimating the time and the mutual information
depends on the relative noise of the oscillatory signals, their phase difference and their
cross-correlations. The question that remains is how cells can optimize these.

CROSS-CORRELATIONS

Fluctuations in the input will lead to correlated fluctuations in the oscillations of the out-
put components. Our analysis shows that these correlations can be beneficial. Moreover,
they can be tailored via cross-regulatory interactions between the target genes down-
stream, as in the gap-gene system of Drosophila [49, 53, 56]. Here, it should be realized
that in our analysis we assume that the noise is uncorrelated from the signal; indeed, the
mean trajectory (x̄(t ), ȳ(t )) does not depend on the noise. Cross-regulatory interactions
will, however, not only affect the noise and hence P (x, y |t ), but also the mean trajec-
tory (x̄(t ), ȳ(t )). This will not change the principle that noise correlations can enhance
the input-output mapping, but it will influence the magnitude of the effect. On the other
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hand, extrinsic noise sources such as the availability of ribosomes, may lead to correlated
fluctuations in the expression of x(t ) and y(t ), while leaving their mean unchanged, as
assumed here. Experiments will have to tell whether cells use noise correlations to en-
hance the precision of telling time. The cyanobacterium S. elongatus is arguably the best
model system to test these ideas. It will certainly be of interest to investigate whether
S. elongatus exploits cross-regulatory interactions between the genes downstream from
RpaA to enhance its information on time.

RELATIVE NOISE

The relative noise of the oscillations depends on the noise σi and the amplitude Ai of
the oscillations. The contribution from the intrinsic noise is expected to scale with the
copy number X as σin,i ∼

p
Xi , which, if the amplitude is small compared to the mean

ri , means that σin,i ∼ p
ri . The relative intrinsic noise thus goes as σ̃in,i ∼ p

ri /Ai . For
the model presented in section 2.1.1, it is given by

σ̃in,i ' p
ri /Ai (2.27)

=
√

rs / fi

√
(µ2

i +ω2)/µi /As . (2.28)

Clearly, the relative noise strength σ̃in,i decreases with As : the amplitude of the oscil-
lations of the readout is proportional to that of the input. The relative noise strength
decreases with the square root of fi , because the gain fi increases not only the ampli-
tude of the output oscillations, Ai ∝ fi , but also their mean ri and thereby the noise,
σin,i ∝p

ri ∝
√

fi . It increases with the mean rs of the input oscillations, because that
increases the mean ri of the output oscillations and thereby the noise σin,i , but not their
amplitude, thus decreasing the relative noise strength σin,i /Ai . Finally, there exists an
optimal protein decay rate µopt =ω that minimizes the relative noise strength and hence
maximizes information transmission. This optimum arises from a trade-off between the
amplitude of the signal and the intrinsic noise: for µÀω, increasing µ reduces the gain
and hence the amplitude Ai as Ai ∝ 1/µ (Eq. 2.4) while the noise decreases more slowly
as

p
ri ∝ 1/

p
µ, thus increasing the relative noise strength σ̃in,i ; in contrast, for µ¿ ω,

the amplitude Ai becomes independent of µi (Eq. 2.4) while the noise continues to rise
as µi decreases, thus again increasing the relative noise strength.

For the transmission of a fluctuating input signal, a similar trade-off between the gain
and the intrinsic noise has been observed in [50] and a related trade-off between mech-
anistic error arising from the intrinsic noise and dynamical error due to the distortion
of the input signal has been described in [57]. A seemingly similar but distinct trade-off,
also leading to an optimal decay rate of the output component, has been reported in
[61]: in that study the optimal decay rate arises from the trade-off between tracking the
input signal and integrating out the noise in the input signal. Indeed, in our discussion
here, we have so far ignored the extrinsic noise in the input signal, and only focused on
the intrinsic noise. However, the decay rate µi does not only affect the output copy num-
ber and thereby the intrinsic noise, it also determines how effectively fluctuations in the
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input signal can be integrated out. More specifically, if the noise in the input ξs (Eq. 2.3)
is independent from the input signal, has amplitude σs and decays exponentially with
correlation time λ, then we expect that the extrinsic contribution to the output noise is
σ2

ex,i = g 2
i µi /(µi +λ)σ2

s [77, 95], where the gain is gi = fi /µi . Hence, the relative extrinsic
noise is

σex,i /Ai = 1/µi

√
(µ2

i +ω2)µi /(µi +λ)σs . (2.29)

We first note that, in contrast to the relative contribution of the intrinsic noise, σin,i/Ai ,
the relative extrinsic noise does not depend on fi : increasing fi raises not only the am-
plitude of the signal, but also that of the noise; increasing fi is thus only useful in rais-
ing the signal above the intrinsic noise. Secondly, for µi À ω,λ, σex,i /Ai ' σs , because
the time integration factor µi /(µi +λ) becomes constant (independent of µi ), and both
the amplitude of the signal, Ai , and the amplification of the input noise, gi decrease
as µ−1

i . For µi ¿ ω,λ, σex,i /Ai ' ωσs /
√
µiλ, because the amplitude Ai becomes inde-

pendent of µi , while the extrinsic contribution σex,i rises with decreasing µi as 1/
p
µi .

In fact, the relative strength of the extrinsic noise σ2
ex,/Ai has a minimum at µopt

ex =
(ω2/λ)(1+

√
1+ (λ/ω)2). We thus conclude that both the relative strength of the intrin-

sic and extrinsic noise exhibit a minimum as function of µi , meaning that there is an
optimal protein lifetime that maximizes information transmission.

PHASE SHIFT

Lastly, how could cells optimize the phase relation between the oscillations of the read-
out proteins? In the simple model of 2.1.1 there is only one control variable, namely the
protein degradation rate (Eq. 2.5). Clearly, it is not possible, in general, to simultane-
ously set the decay rate such that the relative noise strength is minimized, as described
above, and the phase difference is optimized. However, the simple model of 2.1.1 ignores
that gene expression is, in fact, a multi-step process leading to a delay, and it is possible
that nature has tuned this delay so as to optimize the phase relation between the output
oscillations. In addition, cells could use gene expression cascades to adjust the delay.
Whether cells employ these mechanisms to optimize the phase relation is an interesting
question for future work.

CONCLUSION

Cells can increase the transmission of temporal information by increasing the number of
oscillatory signals N used to infer the time. In the analysis presented here, it is assumed
that the system is linear and obeys Gaussian statistics. It is well known that protein dis-
tributions need not be Gaussian, and may exhibit, e.g., a gamma, negative binomial,
or log-normal distribution [94]. In this case, one can construct a multivariate Gaussian
model with the same second moments as the actual, non-Gaussian system. For this
Gaussian model, I (x, y ; t ) ≥ I (xG , yG ; t ), because a Gaussian distribution has the largest
entropy for a given variance [50, 96]; the results of the Gaussian model then present a
lower bound on the mutual information. Moreover, especially at high noise, it might
be beneficial to use non-linear input-output relations to enhance information transmis-
sion [59]. How much these effects can enhance information transmission is beyond the
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scope of the current manuscript. Nonetheless, our linear model with Gaussian statistics
already highlights that the problem of transmitting temporal information is very rich.

The precision of telling time depends on the relative noise σ̃i = σi /Ai of the oscil-
latory signals, their phase shift, and the cross-correlations between them. When the
relative noise σ̃i is the same for all genes, the optimal phase relation that maximizes
the mutual information and minimizes the error is one in which the phases are spaced
evenly. Under this condition, the error in telling time is also uniform in time, provided
that the noiseσi (t ) is constant in time, which, to a good approximation, is the case when
the amplitude of the oscillations is large compared to the mean. This is akin to what
has been observed for the fruitfly Drosophila, where the expression pattern of the gap
genes allows the nuclei to specify their position with nearly uniform precision along the
anterior-posterior axis [56]. When the relative noise amplitudes σ̃i are not the same for
all signals, then the design principle for maximizing information transmission is that the
oscillatory signals which are more reliable, should be spaced more evenly.

Lastly, we have addressed the role of cross correlations between the fluctuations in
the oscillatory signals. When the relative noise is large, cross-correlations do not sig-
nificantly affect information transmission. However, the situation changes markedly in
the low-noise regime. In this regime, cross-correlations change the optimal phase shift
that maximizes information transmission. More strikingly, they can increase the mutual
information. At low noise, cross correlations can thus reduce the error in telling time
and enhance the transmission of temporal information. This phenomenon is similar
to what has been observed for neural networks [52] and spatial gene expression patterns
during embryonic development, where cross-regulatory interactions between genes can
enhance the precision by which cells or nuclei determine their spatial position within the
developing embryo [49, 53, 56]. In all these cases the principle is that cross-correlations
make it possible to tile the output space more efficiently, thus allowing for a less redun-
dant input-output mapping. This is particularly important when the noise is low, and
noise averaging is not important, but efficient tiling of state space is [49, 53].

APPENDIX:

2.4. THE OPTIMAL PHASE RELATION IN THE ABSENCE OF CROSS

CORRELATIONS

We would like to compute the phase relation that minimizes the variance of the error,
(δσt )2, as given by Eq. 2.15, in the absence of cross correlations. However, the problem
is that Eq. 2.11 is an expression for σ−2

t (t ), not σt (t ). Hence, while it is fairly straightfor-
ward to derive the variance of σ−2

t , i.e. 〈(σ−2
t )2〉− 〈σ−2

t 〉2, it is impossible, in general, to
derive analytically the variance of the quantity we are interested in, (δσt )2 = 〈σ2

t 〉−〈σt 〉2.

However, we know that if the variance of a function g (t ) is zero, σ2
g = ∫ T

0 d tP (t )(g (t )−
〈g (t )〉)2 = 0, and g (t ) is thus a constant (independent of time), that then a) 〈 f (g (t ))〉 =
f (〈g (t )〉) and b) the variance of f (t ) = f (g (t )) is zero, σ2

f = 〈 f 2〉−〈 f 〉2 = 0. We now apply

this logic with the identification g (t ) = σt (t ) and f (t ) = g−2(t ). The trick that we thus
employ is to establish that the variance which we can compute, σ2

f = 〈(σ−2
t )2〉− 〈σ−2

t 〉2,



2

32 2. THE ACCURACY OF TELLING TIME VIA OSCILLATORY SIGNALS

is zero. If this is true, then we know that a) the variance of the quantity that we are
interested in, σ2

g = (δσt )2, must be zero as well. Moreover, we then also know that b)

〈σt 〉 =σt = 1/
√

〈σ−2
t (t )〉.

There are two points worthy of note. First, as mentioned, above, whenσ2
f = 〈(σ−2

t (t ))2〉−
〈σ−2

t (t )〉2 = 0, then (δσt )2 = 0. In this case, the phase relation that minimizes σ2
f is the

phase relation that minimises δσ2
t (making it zero indeed). However, when σ2

f 6= 0, then

the phase relation that minimizesσ2
f is not necessarily the phase relation that minimises

δσ2
t . Secondly, the phase relation that minimizes (δσt )2, is not necessarily the phase re-

lation that minimizes σt , even when (δσt )2 = 0. We need to check either numerically or,
if possible, by analytically minimizing 〈σt 〉 whether this is true or not. The same holds
for the mutual information: the phase relation that minimizes (δσt )2, is not necessarily
the phase relation that maximizes the mutual information.

2.4.1. THE PHASE RELATION THAT MINIMIZES (δσt )2 WHEN THE RELATIVE

NOISE STRENGTHS ARE THE SAME

As explained above, to obtain the optimal phase relation that makes (δσt )2 = 0, we aim
to find the phase distribution for which:

σ2
f = 〈(σ−2

t (t ))2〉−〈σ−2
t (t )〉2 = 0. (2.30)

When the cross correlations are zero, σ−2
t (t ) is given by Eq. 2.12. The second term in the

expression above, 〈σ−2
t (t )〉2, is then, for the case that the noise and the ampltidues are

the same for all genes, given by

〈σ−2
t (t )〉 =

(
2πA

σx T

)2 N

2
. (2.31)

The first term in Eq. 2.30 can be obtained recursively, and is given by

〈(σ−2
t (t ))2〉 =

K

[
N (2N +1)

8
+ 1

4

N∑
i< j

cos(2(φi −φ j ))

]
(2.32)

where K is a constant, K =
(

2πA
σx T

)4
. As expected this quantity depends on the phase

relation.
Instead of finding the phase relation that makes the difference between the two terms

of σ2
f in Eq. 2.30 zero, we now want to find the relation that makes the ratio of the two

terms unity, which is equivalent, but mathematically more convenient. This yields

2

N

N∑
i≤ j

cos(2(φi −φ j )) =−1. (2.33)

By solving this as a function of N , we can recognize a pattern, which reveals that the
optimal phase relation that minimizes (δσt )2 is given by

φi −φ j = π

N
(i − j ). (2.34)
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This means that the i -th signal has a phase∆φi = (i−1) πN , as found for the phase relation
that minimizes 〈σt 〉, given by Eq 2.23. So in the case where the correlations are zero, the
optimal phase shift minimizes both 〈σt 〉 and its variance. Moreover, the mean error 〈σt 〉
can then directly be obtained from Eq. 2.31.

2.4.2. THE PHASE RELATION THAT MINIMIZES (δσt )2 WHEN THE NOISE σx

IS NOT CONSTANT IN TIME

We now consider the case that σi '
p

x̄i (t ), which means that dσi /d t 6= 0. In order to
highlight the role of the time-varying noise, we keep Ai = A j = ·· · = A, ri = r j = ·· · = r .
The variance of σ−2(t ) is given by:

σ2
f = 〈(σ−2

t (t ))2〉−〈σ−2
t (t )〉2

=
(

A3(2π)2

16T 2

)2

{N +2N (N +1)r 2 +
N∑

i≤ j

[
cos(φi −φ j )+4r 2 cos[2(φi −φ j )

]+
4r 2 cos(φi −φ j )

]
}−

(
N A3r (2π)2

2T 2

)2

(2.35)

We note that this expression, in contrast to that for the case in whichσi is constant in
time, depends on the mean expression level of x, r . We find numerically that the phase
relation that minimizes σ2

f is the same as that for the scenario in which σi is constant in

time, Eq. 2.34. However, σ2
f and hence (δσt )2 are only zero, when r →∞. We also find

numerically that the phase relation that minimizes σ2
f equals the phase relation that

minimizes the mean error 〈σt 〉 and maximizes the mutual information.

2.4.3. THE PHASE RELATION THAT MINIMIZES (δσt )2 WHEN THE RELATIVE

NOISE STRENGTHS ARE not THE SAME

To assess the importance of differences in the relative noise strength, we will assume
again that σi (t ) = σi is constant in time. Defining the relative noise amplitude Ãi ≡
σ̃−1

i ≡ Ai /σi , the variance of σ−2(t ) is given by:

σ2
f = 〈(σ−2

t (t ))2〉−〈σ−2
t (t )〉2

= 1

8

(
2π

T

)4
[

N∑
i=1

3Ã2
i +

N∑
i≤ j

([
4+2cos[2(φi −φ j )]Ãi Ã j

])]

−
(

1

2

(
2π

T

)2 N∑
i=1

Ãi

)2

(2.36)

It can be verified that this reduces to Eq. 2.30 when σi /Ai is the same for all genes.
Following the logic applied for that scenario, we find that the optimal phase relation that
makes σ2

f = 0 is given by
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N∑
i≤ j

cos
[
2(φi −φ j )Ãi Ã j

]
Ã2

i Ã j =

N∑
i , j=1

Ãi Ã j − 1

2

N∑
i=1

3Ã2
i −2

N∑
i≤ j

Ãi Ã j (2.37)

This expression reduces to Eq. 2.33 when σi /Ai is the same for all genes. It can be veri-
fied numerically that the phase relation that makes σ2

f and hence (δσt )2 zero, is also the

phase relation that minimizes the mean error 〈σt 〉 and maximizes the mutual informa-
tion.



3
ENTRAINMENT OF CIRCADIAN

CLOCKS IN THE PRESENCE OF NOISE

ABSTRACT

Circadian clocks are biochemical oscillators that allow organisms to estimate the time of
the day. These oscillators are inherently noisy due to the discrete nature of the reactants
and the stochastic character of their interactions. To keep these oscillators in sync with
the daily day-night rhythm in the presence of noise, circadian clocks must be coupled to
the dark-light cycle. In this manuscript, we study the entrainment of phase oscillators
as a function of the intrinsic noise in the system. Using stochastic simulations, we com-
pute the optimal coupling strength, intrinsic frequency and shape of the phase-response
curve, that maximize the mutual information between the phase of the clock and time.
We show that the optimal coupling strength and intrinsic frequency increase with the
noise, but that the shape of the phase-response curve varies non-monotonically with the
noise: in the low-noise regime, it features a deadzone that increases in width as the noise
increases, while in the high-noise regime, the width decreases with the noise. These re-
sults arise from a trade-off between maximizing stability—noise suppression—and max-
imizing linearity of the input-output, i.e. time-phase, relation. We also show that three
analytic approximations—the linear-noise approximation, the phase-averaging method,
and linear-response theory—accurately describe different regimes of the coupling strength
and the noise.

3.1. INTRODUCTION

Many organisms possess a circadian clock to anticipate the changes between day and
night. Circadian clocks are biochemical oscillators that can tick without any external
driving with an intrinsic, free-running period of about 24 hrs. In uni-cellular organisms
these oscillations are formed by chemical reactions and physical interactions between
molecules inside the cell, while in multi-cellular organisms these oscillations are typi-
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cally shaped by a combination of intra- and inter-cellular interactions, which are, how-
ever, both mediated by molecular interactions. Due to the discreteness of molecules
and the stochastic nature of chemical and physical interactions, circadian oscillations
are inherently stochastic, which means that they have an intrinsic tendency to run out
of phase with the day-night cycle. To keep the circadian oscillations in phase with the
day-night rhythm, the oscillations must be coupled to daily cues from the environment,
such as daily changes in light-intensity or temperature. This coupling makes it possible
to lock the clock to, i.e. synchronize with, the daily rhythm. However, how the circadian
clock should be coupled to entrainment cues is a question that is still wide open. It is
neither clear what the natural performance measure for entrainment is, nor is it fully
understood how this depends on the strength and form of the coupling, the characteris-
tics of the entrainment signal, and the properties of the clock.

The function that is most commonly used to describe the coupling of the clock to
the entrainment signal is called the phase-response curve [22]. It gives the shift of the
phase of the clock as induced by a perturbation (a small change in, e.g., light intensity),
as a function of the phase at which the perturbation was given. The phase-response
curve has been measured for a wide variety of organisms, ranging from cyanobacteria, to
fungi, plants, flies, and mammals [97]. Interestingly, these phase-response curves share a
number of characteristic features: they typically consist of a positive and a negative lobe,
and often possess a deadzone of no coupling during the subjective day (see Fig. 3.1). Yet,
the width of the deadzone can vary significantly, and also the negative and positive lobe
are not always equal in magnitude.

These observations naturally raise the question of what the best shape is for a phase-
response curve. To answer this, a measure that quantifies the performance of the system
is needed. Several measures have been put forward. A key characteristic of any lock-
ing scheme is the Arnold Tongue [22], which describes the range of system parameters
over which the deterministic system is locked to the driving signal. In general, this range
tends to increase with the strength of the driving signal, and one performance measure
that has been presented is how the range – the width of the Arnold Tongue – increases
with the magnitude of the driving; this derivative has been called the “entrainability” of
the clock [98, 99]. Another hallmark of any stochastic system is its robustness against
noise, and, in general, the stability of an entrained clock depends not only on its in-
trinsic noise, but also on the strength and shape of the coupling function; one way to
quantify clock stability is the so-called “regularity”, which is defined as the variance of
the clock period [98, 99]. Another important property of any locked system, is its sensi-
tivity to fluctuations in the driving signal. To quantify this, Pfeuty et al. have defined two
sensitivity measures, one that describes the change in the phase difference between the
signal and the clock due to a change in the input, and another that quantifies the change
in the stability of the fixed point (the slope of the phase-response curve) in response to a
change in the input signal [97].

These performance measures make it possible to make predictions on the optimal
shape of the phase-response curve. Pfeuty et al. argued that the shape of the phase-
responce curve is determined by the requirement that the clock should respond to changes
in light intensity that are informative on the day-night rhythm, namely light-intensitiy
changes during dawn and dusk, but should ignore uninformative fluctuations in light
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intensity during the day, arising, e.g., from clouds [97]. This naturally gives rise to a dead-
zone in the phase-response curve, which allows the clock to ignore the input fluctuations
during the day. Hasegawa and Arita argued that the shape of the phase-response curve
is determined by a trade-off between regularity (stability) and entrainability [98, 99]. En-
trainability requires not only changes in light intensity, but also that a change in the copy
number ni of a component i , as induced by the changing light signal, leads to a change
in the phaseφ of the clock: the gain dφ/dni should be large. However, a higher gain also
means that the evolution of the phase becomes more susceptible to noise in ni . Maxi-
mizing entrainibility for a given total noise strength integrated over 24 hrs then yields a
phase-response curve with a deadzone: During the day, when informative variations in
light intensity are low, a high gain will not significantly enhance entrainability but will
increase the integrated noise, implying that the gain should be as low as possible during
the middle of the day.

In this manuscript, we introduce another measure to quantify the performance of the
system, the mutual information [63]. The mutual information quantifies the number of
signals that can be transmitted uniquely through a communication channel. As such it
is arguably the most powerful measure for quantifying information transmission, and
in recent years the mutual information has indeed been used increasingly to quantify
the quality of information transmission in cellular signalling systems [31, 32, 46–62]. In
the context studied here, the central idea is that the cell needs to infer from a variable
of the clock, e.g. its phase φ, the time of the day t . The mutual information then makes
it possible to quantify the number of distinct time points that can be inferred uniquely
from the phase of the clock. Importantly, how many time states can be inferred reliably,
depends not only on the noise in the system, but also on the shape of the input-output
curve, φ(t ), i.e. the average phase φ(t ) at time t .

We study how the mutual information between the clock phase and the time de-
pends on the shape and magnitude of the phase response curve in the presence of in-
trinsic noise in the system; we thus do not consider fluctuations in the input signal. The
clock is modelled as a phase oscillator and the phase-response curve is described via a
piecewise linear function (see Fig. 3.1), which allows for optimization and analytical re-
sults. We find that for a given amount of noise in the system there exists an optimal cou-
pling strength that maximizes the mutual information: Increasing the coupling strength
too much will decrease the mutual information. However, as the noise in the system
increases, the optimal coupling strength increases. Moreover, for a given shape of the
phase-response curve featuring a deadzone, the optimal intrinsic (free running) period
of the clock is non-monotonic: as the noise is increased, the optimal period first be-
comes larger than 24 hrs, but then decreases to become smaller than 24 hrs. Optimizing
over not only the coupling strength and the intrinsic period, but also over the shape of
the phase response curve, reveals that the optimal width of the deadzone is also non-
monotonic. As the noise is increased, the width first increases, but then decreases. We
show that all of these results can be understood as a trade-off between linearity and sta-
bility. At low noise, it is paramount to make the input-output relation φ(t ) as linear as
possible, because this maximizes the mutual information; this is enhanced by a large
deadzone and weak coupling. However, for large noise strengths, stability becomes key,
which favours a small deadzone, a stronger coupling, and a smaller intrinsic period.



3

38 3. ENTRAINMENT OF CIRCADIAN CLOCKS IN THE PRESENCE OF NOISE

In the next section, we first briefly present the Chemical Langevin Description of a
biochemical network, because this is important for understanding not only the phase-
reduction method that reduces the system to a phase-oscillator model, but also for un-
derstanding some important characteristics of the mutual information. In the subse-
quent section, we then introduce the mutual information. We emphasize that the mu-
tual information is insensitive to a coordinate transformation and that the mutual in-
formation between all degrees of freedom of the system (i.e. copy numbers of all com-
ponents) and the input (i.e. time t ) is always larger than that between one degree of
freedom and the input. This means that the mutual information that we will compute
between the phase of the clock and the time will provide a firm lower bound on the ac-
tual mutual information. We then briefly describe our phase-oscillator model and how
we model the phase-response curve.

In the results section, we first present the results of stochastic simulations of our
phase-oscillator model. By performing very extensive simulations we find the system
parameters that maximize the mutual information, and by explicitly computing the lin-
earity and stability as a function of parameters, we show that the optimal design as a
function of the noise arises from the trade-off mentioned above between linearity and
stability.

Finally, we present and apply three different analytic approximations (or “theories”),
and show that each recapitulates the simulations in a different parameter regime. The
linear-noise approximation accurately describes the regime of low noise and strong cou-
pling. The phase-averaging method [22] captures the regime of low noise and weak cou-
pling. Finally, the linear-response theory accurately describes the mutual information in
the regime of high noise and weak coupling. Whereas the first two approximations are
valid in the vicinity of the optimal coupling for an appropriate range of noise strengths,
the third turns out to hold only far from optimality.

3.2. MODEL

3.2.1. CHEMICAL LANGEVIN DESCRIPTION

We consider a self-sustained oscillator of M components with copy numbers n1,n2, . . . ,nM ,
denoted by the vector n. Its dynamics is given by

dn

d t
= A(n), (3.1)

where A(n) is determined by the propensity functions of the chemical reactions that con-
stitute the network. The limit cycle of the free-running oscillator is the stable periodic
solution of this equation, n(t ) = n(t+T0), where T0 is the intrinsic period of the oscillator.

Due to the stochasticity of the chemical reactions and the discreteness of the molecules,
the evolution of the network is stochastic. When the copy numbers are sufficiently large
such that there exists a macroscopic time interval d t during which the propensity func-
tions remain constant and the Poissonian distribution of reaction events can be approxi-
mated as a Gaussian, then the dynamics is described by the chemical Langevin equation
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[100],

dn

d t
= A(n)+η(n), (3.2)

where the vector η(t ) describes the Gaussian white noise, characterized by the noise ma-

trix with elements 〈ηi (n(t ))η j (n(t ′))〉 = Di j (n)δ(t − t ′).
A clock is only a useful timing device if it has a stable and precise phase relationship

with the daily rhythm. Biochemical noise tends to disrupt this relationship. To keep
the clock in sync with the day-night rhythm in the presence of noise, the clock must be
coupled to the light signal:

dn

d t
= A(n)+εp(n, t )+η(n). (3.3)

Here p(n, t ) describes the coupling to the light signal and ε the strength of the coupling.
The coupling force p(n, t ) = p(n, t +T ) has a period T and frequency ω = 2π/T , which
in general is different from the intrinsic period T0 and intrinsic frequency ω0 = 2π/T0,
respectively, of the free-running oscillator. In this manuscript, we will assume that the
light signal is deterministic. We thus only consider the biochemical noise in the clock.

3.2.2. MUTUAL INFORMATION

The organism needs to infer the time t from the concentrations of the clock components.
This inference will be imprecise, because of the noise in the clock. We will quantify the
accuracy of information transmission via the mutual information, which is a measure
for how many distinct time states can be resolved from the concentrations of the clock
components [63].

The mutual information I (n; t ) = I ({n1, . . . ,nM }; t ) between the copy numbers of all
components and the time is given by

I (n; t ) =
∫

dn
∫

d tP (n; t ) log2
P (n; t )

P (n)P (t )
, (3.4)

where P (n; t ) is the probability that copy numbers n are found at time t . I (n; t ) measures
the reduction in uncertainty about t upon measuring {n1, . . . ,nM }, or vice versa. The
quantity is indeed symmetric in n and t :

I n; t ) = H(t )−〈H(t |n)〉n (3.5)

= H(n)−〈H(n|t )〉t , (3.6)

where H(a) = −∫
daP (a) log2 P (a), with P (a) the probability distribution of a, is the en-

tropy of a; H(a|b) =−∫
daP (a|b) log2 P (a|b) is the information entropy of a given b, with

P (a|b) the conditional probability distribution of a given b; 〈 f (c)〉c denotes an average
of f (c) over the distribution P (c).

A key point worthy of note is that the mutual information is invariant under a co-
ordinate transformation, which allows us to put a firm lower bound on the mutual in-
formation between time and the clock components. Specifically, we can first make a
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non-linear transformation from n to some other set of variables x, of which two compo-
nents are the amplitude R of the clock and its phase φ. Because the mutual information
is invariant under this transformation,

I (n, t ) = I (x, t ). (3.7)

Secondly, if the time is inferred not from all the components of x, but rather from R and
φ, then, in general

I (R,φ; t ) ≤ I (x; t ). (3.8)

By combining this expression with Eq. 3.7, we find that

I (n; t ) ≥ I (R,φ; t ) (3.9)

Hence, once we have defined a mapping between n and x and hence (R,φ), the mutual
information I (R,φ; t ) between the combination of the amplitude and phase of the clock
(R,φ) and time t , puts a lower bound on the mutual information I (n; t ). A weaker lower
bound is provided by the mutual information between the phase of the clock and time:

I (n; t ) ≥ I (R,φ; t ) ≥ I (φ; t ). (3.10)

However, we expect this bound to be rather tight, since a reasonable, natural, mapping
between n and (R,φ) should put the information on time in the phase of the clock.

3.2.3. PHASE OSCILLATOR

The bound of Eq. 3.10 makes it natural to develop a description of the clock in terms
of the phase. Here, we review the derivation of such a description, largely following the
standard arguments in [22], but paying special attention to the appropriate form of the
effective noise on the phase variable. In the absence of any coupling and noise, the tem-
poral evolution of the phase is given by

dφ(n)

d t
=ω0, (3.11)

where ω0 = 2π/T0 is the intrinsic frequency of the clock, with T0 the intrinsic period. As
the phase is a smooth function of n, the evolution of φ is also given by

dφ(n)

d t
=∑

i

∂φ

∂ni

dni

d t
. (3.12)

Combining the above two equations with Eq. 3.1 yields the following expression for the
intrinsic frequency

ω0 =
∑

i

∂φ

∂ni
Ai (n). (3.13)

This equation defines a mapping φ(n). This mapping is defined such that for each point
n in state space, the time derivative dφ(n)/d t = dφ/d t of the phase is constant and
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equal toω0. The surfaces of constantφ(n), defined according to this mapping, are called
isochrones.

In the presence of noise, the phase dynamics is, combining Eqs. 3.2 and 3.12,

dφ(n)

d t
=∑

i

∂φ

∂ni

[
Ai (n)+ηi (n)

]
, (3.14)

=ω0 +ξ(n), (3.15)

which yields for the noise on the phase variable

ξ(n) =∑
i

∂φ

∂ni
ηi (n). (3.16)

In general, the variance of ξ thus depends on all of the state variables n, not just on the
phase φ, and Eq. 3.15 does not give a closed description in terms only of φ. However,
when the deviations from the limit cycle are small compared to the scale over which the
noise strength changes as a function of distance from the limit cycle, we can estimate
the noise by evaluating it at the limit cycle, n0:

ξ(φ) =∑
i

∂φ(n0)

∂ni
ηi (n0), (3.17)

with Gaussian white noise statistics

〈ξ(φ(t ))ξ(φ(t ′))〉 =∑
i , j

∂φ

∂ni

∂φ

∂n j
Di j (n0)δ(t − t ′), (3.18)

≡ 2D(φ)δ(t − t ′). (3.19)

When the system is coupled to light, the phase evolution becomes, from Eqs. 3.3 and 3.12,

dφ(n)

d t
=∑

i

∂φ

∂ni

[
Ai (n)+εpi (n, t )+ηi (n)

]
. (3.20)

The force depends explicitly on time. This impedes a unique definition of the isochrones
φ(n), because how the phase evolves at a particular point in phase space depends not
only on n but also on t . Of course, one could still adopt the mapping of the free running
system, in which case the evolution of the phase is given by

dφ(n)

d t
=ω0 +ε

∑
i

∂φ

∂ni
pi (n, t )+ξ(φ). (3.21)

The problem is that, because along the surface φ(n) the light-coupling term is not con-
stant, dφ(n)/d t will depend on n. One can then not reduce the dynamics to that of a
single phase variable.

However, if ε is small and the force only leads to small deviations from the limit cy-
cle of the free-running system, then one may approximate the effect of the forcing by
evaluating the corresponding term at the limit cycle, n0. We then have

dφ(n)

d t
=ω0 +ε

∑
i

∂φ(n0)

∂ni
pi (n0, t )+ξ(φ). (3.22)
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In this case the evolution of the phase no longer explicitly depends on n:

dφ

d t
=ω0 +Q(φ, t )+ξ(φ), (3.23)

with

Q(φ, t ) = ε∑
i

∂φ(n0(φ))

∂ni
pi (n0(φ), t ). (3.24)

How a circadian clock responds to a given light signal L(t ) depends on its phase
φ; it does not explicitly depend on time. The coupling term can then be written as
Q(φ, t ) = Z (φ)L(t ), where Z (φ) is the instantaneous phase response curve, which de-
scribes how the clock responds to the light signal as a function of its phase φ. In addi-
tion, while in general the noise strength depends on the phase, we will, motivated by the
experimental observations of Mihalecescu and Leibler on the S. elongatus clock[67], as-
sume it is constant. We then finally arrive at the equation that describes the evolution of
the phase in our model:

dφ

d t
=ω0 +Z (φ)L(t )+ξ(t ), (3.25)

with 〈ξ(t )ξ(t ′)〉 = 2Dδ(t − t ′).

In what follows, we will study entrainment using the above equation not only when
Z (φ)L(t ) and D are much smaller than ω0, so that the weak coupling assumptions nec-
essary for the reduction to a phase oscillator clearly hold, but also when Z (φ)L(t ) or D
are of order ω0 or larger. As we discuss in more detail in Section 3.5, however, this does
not present any contradiction, because it is perfectly possible for the noise and the ex-
ternal driving to be small compared to restoring forces orthogonal to the limit cycle, so
that the system always stays near the limit cycle and the phase is the only relevant vari-
able, while simultaneously strongly perturbing motion along the limit cycle. We also
note that ε can be varied independently of the noise strength. What is perhaps less ob-
vious is whether Z (φ) and D can be varied independently. When the size of the system,
e.g. the volume of the living cell, is changed, as was done for Bacillus subtilus [101], then
the noise strength D will change, but the coupling strength Z (φ) will, to first order, not
change because the concentrations remain constant. Moreover, typically the system is
coupled to light only via a relatively small number of reactions, while the noise is de-
termined by all reactions. Also in this case, it seems natural to assume that Z (φ) and
D can be varied independently. We note that the arguments of Hasegawa and Arita do
not contradict our arguments that Z (φ) and D can be varied independently: the fact
that changing the gain ∂φ/∂ni affects both the coupling to light (entrainability) and the
phase noise [98, 99], does not mean that the noise and the coupling cannot be varied
independently if other parameters are changed (and vice versa). We thus imagine that
pi (n) can be tuned (by evolution) independently of the Di j (n). We do not change the
mapping φ(n), determined by the properties of the uncoupled system.
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Figure 3.1: Cartoon of the system. (A) The instantaneous phase response curve Z (φ), character-
ized by the 5 parameters ε+,ε− andφ1,φ2,φ3. The driving signal is given by L(t ) = 1 during the day
and L(t ) = 0 during the night. (B) The phase evolution of the system, dφ/d t , can be interpreted
as that of a particle in a potential U (φ), with a force −dU (φ)/dφ = ω0 + Z (φ)L(t ). Note that the
particle only experiences a force during the day, when L(t ) = 1, and not during the night, when
L(t ) = 0. (C) The phase evolution of the system, in the limit of small noise. During the night the de-
terministic system always evolves with its intrinsic frequencyω0. During the day, it evolves with its
intrinsic frequency ω0 when the phase is between φ1 and φ2; between φ3 −2π and φ1, the system
is “pushed”, moving with a frequency ω0 +ε+, while between φ2 and φ3 it is slowed down, moving
at frequencyω0−ε−. (D) Illustration of how P (φ) evolves in time, in the regime of strong coupling.
At dawn, the system is pushed, narrowing the distribution; during the deadzone in which Z (φ) = 0,
the distribution tends to widen; near dusk, the system is slowed down, narrowing the distribution;
during the night, the system evolves freely, widening the distribution again.

3.2.4. THE SYSTEM

We will approximate Z (φ) and L(t ) as step functions, shown in Fig. 3.1. This makes it
possible to analytically obtain the Arnold tongue, i.e. the range of parameters for which
the deterministic system locks to the day-night rhythm in the absence of noise. The light-
dark function L(t ) is unity for 0 < t < T /2 and zero for T /2 < t < T . The shape of the
instantaneous phase response curve Z (φ) is inspired by experimentally characterized
response curves, featuring a positive lobe, a dead-zone in which Z (φ) is essentially zero,
a negative lobe, followed by a positve lobe again [97]. It is characterized by five variables,
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the coupling strengths ε+ and ε−, and the phases φ1,φ2,φ3:

Z (φ) =


ε+ 0 <φ<φ1

0 φ1 <φ<φ2

−ε− φ2 <φ<φ3

ε+ φ3 <φ< 2π

(3.26)

where ε+ and ε− are greater than 0. With these 5 variables, a wide range of experimentally
characterized phase response curves can be described.

3.3. RESULTS

3.3.1. ARNOLD TONGUE OF THE DETERMINISTIC SYSTEM

Motivated by the observation that circadian clocks typically lock 1:1 to the day-night
rhythm, we will focus on this locking scenario, although we will also see that this sys-
tem can exhibit higher order locking, especially when the intrinsic period of the clock
deviates markedly from that of the day-night rhythm. To derive the Arnold tongue, we
first note that when the clock is locked to the light-dark cycle, it will have a characteristic
phase φs at the beginning of the light-dark cycle, ts = 0. In the case of 1:1 locking, the
phase of the clock will then cross phase φ1 at time t1, φ2 at time t2, and φ3 at time t3. To
obtain the Arnold tongue, we have to recognize that there are in total 12 possible locking
scenarios: 3 for φs and 4 for t1, t2, t3. The scenarios for φs are: 1: φ3 −2π < φs < φ1; 2:
φ1 <φs <φ2; 3: φ2 <φs <φ3. The 4 scenarios for t1, t2, t3 are defined by where T /2 falls
with respect to these times: 1: T /2 < t1 < t2 < t3; 2: t1 < T /2 < t2 < t3; 3: t1 < t2 < T /2 < t3;
4: t1 < t2 < t3 < T /2. For each of these 12 scenarios, we can analytically determineφs and
t1, t2, t3, which then uniquely specify φ(t ). The 4 unknowns, φs , t1, t2, t3, give each an in-
equality for T , and the range of T that satisfies all 4 inequalities determines the width of
the Arnold tongue. For each of the 12 scenarios for the given ε+,ε−, we have an Arnold
tongue, and those 12 tongues together give “the” Arnold tongue for those values of ε+,ε−.
We now derive the tongue for scenario 1, which is also the most important one, as we will
see: in this regime, the mutual information between time and the phase of the clock is
the largest.

Scenario 1 is characterized by: φ3 −2π<φs <φ1; 0 < t1 < t2 < T /2 < t3. The solution
depends on whether ε− is larger or smaller than ω0. If ε− < ω0, then the deterministic
system locks 1:1 to the driving signal when

φs + (ε++ω0)t1 +ω0(t2 − t1)

+ (−ε−+ω0)(T /2− t2)+ω0T /2 =φs +2π. (3.27)

To solve this, we note thatφ1 =φs +(ω0+ε+)t1,∆φ12 ≡φ2−φ1 =ω0(t2− t1). The solution
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is

t1 = 2π−T (ω0 −ε−/2)−ε−∆φ12/ω0

ε++ε−
≥ 0, (3.28)

t2 = ∆φ12

ω0
+ t1 < T /2, (3.29)

t3 = ∆φ23

ω0 −ε−
+ t2 > T /2, (3.30)

φs =φ1 − (ω0 +ε+)t1 >φ3 −2π, (3.31)

where ∆φ23 ≡ φ3 −φ2. The above inequalities lead to the following inequalities for the
period T , respectively:

T ≤ 2π−ε−∆φ12/ω0

ω0 −ε−/2
, (3.32)

T > 2π+ε+∆φ12/ω0

ε+/2+ω0
, (3.33)

T < 2π+ε+∆φ12/ω0 +∆φ23(ε++ε−)/(ω0 −ε−)

ε+/2+ω0
, (3.34)

T > (∆φ13 −2π)(ε++ε−)/(ω0 +ε+)+2π−ε−∆φ12/ω0

ω0 −ε−/2
, (3.35)

where ∆φ13 ≡ φ3 −φ1 = ∆φ12 +∆φ23. The width of the Arnold tongue is given by the
range of T that satisfies all inequalities.

If ε− >ω0, then the equation to solve is:

φs + (ε++ω0)t1 +ω0(t2 − t1)+ω0T /2 =φs +2π. (3.36)

The solution is

t1 = 2π−ω0T /2−∆φ12

ε++ω0
≥ 0 (3.37)

t2 = ∆φ12

ω0
+ t1 < T /2 (3.38)

t3 =∞> T /2 (3.39)

φs =φ1 − (ω0 +ε+)t1 >φ3 −2π (3.40)

The third inequality, for t3 does not contribute, if the other inequalities are satisfied. We
thus have 3 inequalities:

T ≤ 2(2π−∆φ12)

ω0
(3.41)

T > 2π+ε+∆φ12/ω0

ε+/2+ω0
(3.42)

T > 2∆φ23

ω0
(3.43)
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It is seen that the locking region does not depend on the absolute values ofφ1,φ2,φ3,
but only on the separation between them, leaving only two independent parameters that
are related to the phase: ∆φ12 = φ2 −φ1 and ∆φ23 = φ3 −φ2; the remaining interval is
given by 2π−∆φ13 = 2π− (∆φ12 +∆φ23). Shifting the absolute values of φ1,φ2,φ3 only
changes the definition of the phase of the clock, not the moments of the day—t1, t2, t3—
at which Z (φ) changes. The system thus has 5 independent parameters, 4 related to Z (φ)
— ∆φ12,∆φ23,εP ,εM —and one being the intrinsic frequency ω0.

In the appendix, we derive the Arnold Tongues for the other scenarios. It turns out
that only scenarios 1 - 4 yield stable solutions; the solutions of the other scenarios are
unstable.

Fig. 3.2 shows the Arnold Tongues for the 4 scenarios. Since we imagine that the pe-
riod of the light-day cycle is fixed while the clock can adjust its intrinsic frequency ω0,
we plot the range of ε= εP = εM over which the system exhibits a stable deterministic so-
lution, as a function of ω0/ω; ∆φ12 =∆φ23 = π/2. The different colors correspond to the
different scenarios. Clearly, the Arnold Tongues of the respective scenarios are adjoin-
ing. The region in the middle, around ω0 =ω, bounded by the blue lines, corresponds to
our natural scenario, i.e. scenario 1, discussed above. The green lines bound the Arnold
Tongue of scenario 3. This is an unnatural scenario, because in this scenario the clock is
driven backwards when the light comes up. Moreover, for ω0/ω> 2, the system can also
exhibit higher-order locking, which is biologically irrelevant. We will therefore focus on
the regime 0.5 <ω0 < 2.

Fig. 3.2 shows that for ε< 1 the Arnold Tongue exhibits the characteristic increase in
its width as the coupling strength is increased: coupling increases the range of frequen-
cies over which the clock can be entrained. However, for ε> 1, the width does not change
significantly; in fact, it does not change at all when ω0 >ω. This is because a) during the
day, for ε− = ε= ε+ > 1, the phase evolution comes to a halt at φ3—the particle sits in the
potential well of Fig. 3.1B and b) during the night the system evolves with a fixed speed
ω0, independent of ε.
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Figure 3.2: The Arnold Tongue for 1:1 locking in the deterministic model, with the coupling
strength ε+ = ε− = ε in units of the (fixed) frequency of the day-night rhythm ω, plotted as a func-
tion of the intrinsic frequency of the clock, ω0/ω. The different colors correspond to the different
scenarios that yield a stable solution. The large region around ω0/ω = 1, bounded by the blue
lines, corresponds to the Arnold Tongue of scenario 1. The adjoining region to the right, with the
red boundaries, corresponds to scenario 2. The green lines bound the Arnold Tongue of scenario 3,
and the yellow lines on the far left yield the Arnold Tongue of scenario 4. The other key parameters
of Z (φ) are kept constant: ∆φ12 =∆φ23 =π/2.
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Figure 3.3: The mutual information as a function of ε, D , and ω0, keeping ∆φ12 = ∆φ23 = π/2.
(A) Heatmap of the mutual information as a function of ε/ω and ω0/ω for D = 0.1/T , respectively.
Superimposed are the Arnold Tongue for 1:1 locking in scenarios 1–4. It is seen that the mutual
information is high inside the Arnold Tongues, with the region corresponding to scenario 1 being
the most stable one. The mutual information can, however, also be high outside the 1:1 locking
regions, because of higher-order locking, especially whenω0/ω> 2. (B-D) The mutual information
as a function of ω0/ω for different values of the diffusion constant D , and for three values of the
coupling strength ε/ω, as indicated by the dashed lines in panel A: ε/ω = 0.5 (B), ε/ω = 1.5 (C),
and ε/ω= 4.5 (D). For all values of ε, the mutual information increases as D decreases. The peaks
outside the main locking region around ω0 ≈ω correspond to higher order locking.
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Figure 3.4: Optimal design of the clock: parameters ε = ε+ = ε− and ω0 of the phase-response
curve Z (φ) that maximize the mutual information I (φ, t ) as a function of the intrinsic clock noise
D , keeping the shape of Z (φ) constant (see Fig. 3.1A). (A) The mutual information I

ω
opt
0

(φ; t ) ob-

tained by maximizing I (φ; t ) over ω0 as a function of ε, for different values of D . It is seen that
there is an optimal coupling strength εopt that maximizes the mutual information, which depends
on the magnitude of the diffusion constant D ; the blue dot denotes the maximum for each value
of D . The figure also shows the predictions of three theories, each for their own regime of valid-
ity: the linear-noise approximation (LNA), which captures the regime of strong coupling ε and low
diffusion D (result shown for D = 10−2/T ); the phase-averaging method (PAM), which describes
the regime of weak coupling and weak noise (result shown for D = 10−3/T ); and linear-response
theory (LRT), which describes the regime of high diffusion and weak coupling (result shown for
D = 1/T ). For a more detailed comparision of the accuries of the respective theories, see Fig. 3.8.

(B) The optimal coupling strength εopt (red dots) and the optimal intrinsic frequency ω
opt
0 (blue

dots), both obtained by maximizing I (φ; t ) over both ε and ω0, as a function of D . While εopt in-

creases with D monotonically, ω
opt
0 first decreases from ω0 = ω, but then rises again to become

larger than ω for higher D . The lines are a guide to the eye. Other parameters: ∆φ12 =∆φ23 =π/2.

3.3.2. OPTIMAL COUPLING STRENGTH AND INTRINSIC FREQUENCY IN PRES-
ENCE OF NOISE

While the Arnold Tongue shows the range of parameters over which the deterministic
system can exhibit stable 1:1 locking, it does not tell us how reliably the time can be
inferred from the phase in the presence of noise. To address this question, we have com-
puted the mutual information I (φ; t ) between the phase of the clock,φ(t ), and the time t ,
by performing long stochastic simulations of the system, i.e. stochastically propagating
Eq. 3.25.

Fig. 3.3A shows a heatmap of the mutual information as a function ε+ = ε− = ε and
ω0/ω, for ∆φ12 = ∆φ23 = 0.5π and D = 0.1/T . Superimposed over the heatmap are the
deterministic Arnold Tongues for scenarios 1–4, which are also shown in Fig. 3.2. It is
seen that the mutual information is highest in the region bounded by the Arnold Tongue
of 1:1 locking in scenario 1. Interestingly, however, the figure does also show that the
mutual information can be large outside of the 1:1 locking regimes, especially when
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ω0/ω> 2. This is the result of higher order locking.

The results of Fig. 3.3A are further elucidated in panels B-D, which show the mutual
information as a function of ω0/ω for different values of the diffusion constant D , and
for three different values of ε/ω, respectively; the results for D = 0.1/T in the panels
B-D correspond to three different cuts through the heatmap of panel A. The following
points are worthy of note. First, it can be seen that for each value of ε/ω and ω0/ω the
mutual information always increases with decreasing D . Decreasing the noise makes
the mapping from the time to the phase of the clock more deterministic, which means
that the time can be more accurately inferred from the phase of the clock. Secondly, it
is seen that the mutual information exhibits very characteristic peaks, which result from
higher order locking. For example, the peak at ω0/ω ≈ 2.3 for ε = 1.5ω, corresponds to
2:1 locking.

Fig. 3.3 also shows that, for a given ω0 and D , the mutual information initially in-
creases with ε. This is not surprising, and is consistent with the observation that increas-
ing the coupling strength ε tends to widen the Arnold Tongue; locking is enhanced by
increasing the coupling strength. However, a closer examination of the different panels
of Fig. 3.3 suggests that the mutual information not only saturates as ε is increased fur-
ther, but even goes down. The second surprising observation is that the optimal intrinsic
frequency ω0 that maximizes the mutual information is not equal to ω. In fact, it seems
to be smaller than ω when D is small, but then becomes larger than ω as D is increased
(panel D).

To elucidate the optimal design of the clock that maximizes the mutual information
further, we show in Fig. 3.4A the mutual information I

ω
opt
0

(φ; t ) that has been obtained by

maximizing I (φ; t ) over ω0 as a function of ε, for different values of D . It is seen that for
all values of D , I

ω
opt
0

(φ; t ) first rises with ε, as expected. However, I
ω

opt
0

(φ; t ) then reaches a

maximum, after which it comes down: there exists an optimal coupling strength εopt that
maximizes I

ω
opt
0

(φ; t ); increasing the coupling too much will actually decrease the mutual

information. Fig. 3.4A also shows, however, that the optimal coupling εopt does increase
with the diffusion constant. This is more clearly shown in panel B: εopt increases mono-

tonically with D . This panel also shows the optimal intrinsic frequency ωopt
0 obtained by

maximizing the mutual information over both ω0 and ε, as a function of D . For D → 0,
εopt goes to zero, and ω0 to ω—this is the free running clock. As D is increased, however,
ω0 first decreases, but then increases again to become larger than ω for higher diffusion
constants. The optimal intrinsic period that maximizes the mutual information depends
in a non-trivial, non-monotonic, manner on the noise in the clock.
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Figure 3.5: The optimal design arises from a trade-off between linearity and stability. (A) The black
line shows the Arnold Tongue for scenario 1 and 4 while the green line shows the Arnold Tongue
of scenario 2 (see also Fig. 3.2). The dashed blue line shows for each value of ε the value of ω0 that
makes the input-output curve, φ(t ), most linear, i.e. minimizes

∫ T
0 d t (φ(t )−ωt )2. The dashed red

line shows for each value of ε the value of ω0 that maximizes the stability. For ε/ω< 2, this line is
ω0 = ε, along which F ′ = 0; for ε = ε− > ω0, F ′ = 0 for all values of ω0 and ε; the line of maximal
stability then corresponds to the line where the system spends most of its time in φ2, which is the
line ω0 = ε when ε< 2ω and ω0 = 2ω when ε≥ω; this is further illustrated in panel B. The dashed
black line shows a parametric plot of the optimal system, i.e. the combination (εopt,ω

opt
0 ) that

maximizes the mutual information as a function of D (values of D along this solid line are indicated
by the coloured circles; see also Fig. 3.4B). It is seen that for low diffusion constant, the optimal
system that maximizes the mutual information (black line) follows the dashed blue line where
the input-output curve is most linear, while for high noise the optimal system moves towards the
dashed red line, where the system is most stable. How this trade-off between linearity and stability
maximizes information tranmission is further illustrated in panels (C) and (D). Panel (B) shows
the average input-output curves for the three points labelled (a), (b), and (c) in panel A. It is seen
that as the system moves towards the line of maximal stability, the time the system spends in φ2
increases; for ε/ω> 2, at ω0 = 2ω, the system starts the day at φ2. Panel (C) shows the two average
input-output curves corresponding to the two points (1) and (2) in panel (A), together with the
output noise, for a high value of the diffusion constant, D = 0.1/T . Panel (D) shows the same,
but then for a low value of the diffusion constant, D = 10−3/T . It is seen that when the noise is
small (panel D), the output noise of the more stable system (red line) is hardly smaller than that
of the more linear system (blue line); consequently, the optimal input-output curve can be linear
to maximize information transmission. In contrast, when the noise is large (panel C), the system
with a more linear input-output curve (the blue line) has significantly more output noise than the
more stable but more non-linear system (red line); in this regime, stability becomes important for
taming the output noise, making the optimal system more non-linear (red line). Other parameters:
∆φ12 =∆φ23 =π/2.
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3.3.3. OPTIMAL DESIGN ARISES FROM TRADE-OFF BETWEEN LINEARITY AND

STABILITY

To understand the optimal design of the clock, we have to recognize that, in general, the
amount of information that is transmitted through a communication channel depends
on the input distribution, the input-output relation, and on the noise that is propagated
to the output. For a given amount of noise, the optimal shape of the input-output re-
lation that maximizes the mutual information is determined by the shape of the input
distribution. However, the shape that optimally matches the input-output curve to the
input distribution, is not necessarily the design that minimizes the noise in the output.
Our system provides a clear demonstration of this general principle, and, as we will see,
the optimal design of the clock can be understood as arising from a trade-off between
stability, i.e. noise minimization, and linearity, i.e. optimally matching the input-output
curve to the statistics of the input.

When the noise is very weak, noise minimization is not important, and optimally
matching the input-output curve to the input distribution is paramount. Since the input
distribution p(t ) is flat, the optimal input-output curve is linear: the average phase φ(t )
should increase linearly with time t . This is indeed the solution of the free running clock,
φ(t ) = ω0t , and it explains why in the low-noise limit the optimal design is that of an
essentially free running system that is only very weakly coupled to the input.

However, as the noise level is increased, the reliability by which each input signal is
relayed, becomes increasingly important. Here, a trade-off could emerge: while increas-
ing the coupling strength ε could reduce the noise at the output, which tends to enhance
information transmission, it may also distort the input-output curve, pushing it away
from its optimal linear-shape, decreasing information transmission. Can we capture this
trade-off quantitatively?

To study the trade-off between linearity and stability, we have computed for each
value of ε, the value of ω0 that makes the average input-output relation φ(t ) most linear,
i.e. minimizes

∫ T
0 d t (φ(t )−ωt )2. The result is the blue line in Fig. 3.5A, which lies in

the Arnold tongue of scenario I. Along this line of maximal linearity, ω0 decreases as ε
increases, which can be understood intuitively by noting that increasing ε introduces a
curvature in the input-output relation, leading to a deviation away from the straight line
ωt : at the beginning of the day, till the time t1 at which the system crosses φ1, the phase
evolves with a speed ω0 +ε, whereas between the time t2 at which the system crosses φ2

and the end of the day at T /2, the phase evolves either follows φ2 when ε = ε− > ω0 or
evolves with a speed ω0 − ε when ε = ε− < ω0. While increasing ε tends to increase the
curvature, this effect can be counteracted by decreasing ω0.

To quantify the stability, we define the return map Ft (φ):

φ(t +T ) = Ft (φ(t )) =, (3.44)

where the subscript t for F indicates that the return map depends on time; this subscript
will be suppressed in what follows below when there is no ambiguity, in order to simplify
notation. The deterministic solution φ∗(t ) is given by φ∗(t ) = φ∗(t +T ) = F (φ∗(t )). We
now expand F (φ) around φ∗(t ):

F (φ∗+δφ) = F (φ∗)+F ′(φ∗)δφ, (3.45)
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where δφ= φ−φ∗ and we have dropped the subscript t because F ′(φ), which gives the
rate of exponential relaxation back to the limit cycle over many cycles, must be indepen-
dent of t . Indeed, by exploiting that F (φ∗(t )) =φ∗(t +T ), we find that

δφ(t +T ) = F ′(φ∗)δφ(t ). (3.46)

The quantity F ′(φ∗) ≡ ∂F (φ)/∂φ|φ∗ = ∂φ(t +T )/∂φ(t )|φ∗(t ) determines the linear stabil-
ity of the system, with F ′ < 1 meaning that the system is stable. The quantity can be
directly obtained from the deterministic solutions. We first note that, since L(t ) = 0
during the dark, F ′(φ∗(t = 0)) = ∂φ(T )/∂φ(0) = ∂φ(T /2)/∂φ(0). For scenario 1, when
ε− <ω0,φ(T /2) =φ2+(ω0−ε−)(T /2−t2). We then find that, exploiting Eqs. 3.38 and 3.40,
F ′(φ∗(t = 0) = ∂φ(T /2)/∂φ(0) = ∂φ(T /2)/∂φs = (∂φ(T /2)/∂t2)(∂t2/∂t1)(∂t1/∂φs ) = (ω0 −
ε−)/(ω0 + ε+). Similarly, for scenario 2 we find that, for ε− < ω0, F ′(φ∗(t = 0) = (ω0 −
ε−)/ω0. Here, we consider the case that ε− = ε+ = ε. Clearly, in both scenarios the stabil-
ity is maximized when ε approaches ω0 and F ′(φ∗) becomes zero. This defines the line
ε=ω0, along which F ′(φ∗) = 0; it is the part of the red dashed line of maximal stability in
Fig. 3.5A that corresponds to ε< 2ω.

For ε = ε− > ω0, F ′(φ∗) = 0 for both scenarios I and II, because during the day the
phase evolution of the system comes to a standstill at φ2; any perturbation in φwill fully
relax during one period. Can we nonetheless differentiate in the stability strength, even
though the linear stability F ′(φ∗) = 0 for all points (ε,ω) above the line ε=ω0? To answer
this question, we turn to a global stability measure, which is defined by the amount of
time the deterministic system spends at φ2, which is the bottom of the potential well
when ε = ε− ≥ ω0 (see Fig. 3.1). The value of ω0 that maximizes the stability for a given
ε according to this measure, is ω0 = ε when ε ≤ 2ω and ω0 = 2ω when ε ≥ 2ω. This fully
specifies the line of maximum stability shown in Fig. 3.5A. The reason why the stability
is maximized along this line, is illustrated in Fig. 3.5B. During the night, the trajectories
evolve freely, and because of noise they will arrive at the beginning of the day with a dis-
tribution of phases. Along the line of maximum stability, the stochastic trajectories are
most likely to reach the bottom of the potential well at φ2 during the day (see Fig. 3.1),
where they will be confined, before they are released again during the night. Indeed,
along this stability line the variance in the phase, 〈δφ2〉, will be lowest which tends to in-
crease information transmission. However, the input-output relation φ(t ) is then highly
non-linear. In fact, the globally most stable solution, for all possible values of ε and ω0,
is

φstab(t ) ≡φ2θ(T /2− t )+ω0tθ(t −T /2), withω0 = 2ω, (3.47)

which is the most stable solution for any ε≥ 2ω. It is shown in Fig. 3.5B—it is the solution
at the high-frequency boundary of the AT tongue of scenario 2. This solution maximizes
the probability that trajectories that start of the limit cycle at the beginning of the day,
will return to the limit cycle φ2 before the end of the day. While this solution is maxi-
mally stable, no time points t can be inferred from φ(t ) during the day, because φ(t ) is
completely flat. This dramatically reduces information transmission.

The optimal values of ω0 and ε that maximize the mutual information as a function
of the noise in the system can now be understood as a trade-off between linearity and
stability. This trade-off is illustrated in the bottom panels of Fig. 3.5, which show the



3

54 3. ENTRAINMENT OF CIRCADIAN CLOCKS IN THE PRESENCE OF NOISE

average input-output curves, together with their output noise, for the two points 1 and
2 in the map of panel A, both for a high diffusion constant (panel C) and a low diffusion
constant (panel D). When the diffusion constant is low (panel D), the noise in the more
stable but more non-linear system (red line, corresponding to point 2) is hardly lower
than that in the more linear but less stable system (blue line, corresponding to point
1), which means that the benefit of linearity dominates and the mutual information is
maximized in the more linear system. In contrast, when the noise is larger (panel C), the
output noise in the more stable but more non-linear system (red line) is so much smaller
than that in the less stable but more linear system (blue line) that it outweighs the cost
of higher non-linearity, thus maximizing mutual information.

Finally, panel A also shows a parametric plot of the optimal (ε,ω0) that maximizes the
mutual information, with the noise D the parameter that is being varied (dashed black
line; the colors of circles denote values of the diffusion constant). It is seen that for low D
the optimal system traces the dashed blue line of maximal linearity, but then at a higher
D makes a transition towards the dashed red line line of maximal stability.

3.3.4. THE OPTIMAL SHAPE OF THE PHASE RESPONSE CURVE

In the previous section, we showed how the optimal values of the coupling strength ε and
the intrinsic frequencyω0 depend on the noise D in the system, while keeping the shape
of the coupling function Z (φ) constant. In this section, we will relax this restriction.

We first checked the effect of changing the magnitude of the positive and negative
lobe of the coupling function Z (φ) as characterized by ε+ and ε−, respectively (see Fig. 3.1),
keeping ∆φ12 =∆φ23 = π/2 constant. We varied ε+ and ε− via a parameter α, defined as
ε+ = (1−α)ε and ε− =αε; changingα thus keeps the total absolute coupling strength (the
integrated modulus) constant. We found, however, that the results are not very sensitive
to the precise values of ε+ and ε− (see Appendix 3.9).
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Figure 3.6: A paramteric plot of the optimal coupling strength ε∗(D), the optimal intrinsic fre-
quency ω∗

0 (D) and the optimal width of the deadzone ∆φ∗
12(D) that maximize the mutual infor-

mation, with the noise D being the parameter that is varied. The value of ∆φ23 = π/2 was kept
constant. It is seen that ε∗ rises with D , while ω∗

0 remains initially close to ω, but then rises too. In
contrast, ∆φ∗

12 first increases and then decreases. Coloured dots give the diffusion constants for
which (ε∗,ω∗

0 ,∆φ∗
12) are optimal.

We then decided to compute the mutual information I (φ, t ) as a function of∆φ12 and
∆φ23 for different values of ε, ω0, and D , keeping ε+ = ε− = ε. We found that the mutual
information is essentially independent of ∆φ23. This can be understood as follows: The
deterministic Arnold tongue and, to a good approximation, the dynamics of the stochas-
tic system, does not depend on the absolute values of φ1,φ2,φ3, but only on ∆φ12 and
∆φ23 (see section 3.3.1). Moreover, as long asφ3 is crossed during the night (see Fig. 3.1),
we can change φ3 at will, because during the night, when L(t ) = 0, the clock is not cou-
pled to light (see Eq. 3.25), meaning that the clock runs with its intrinsic frequency ω0.
Changing ∆φ23 by changing φ3 will thus have no effect. Changing ∆φ23 by changing φ2

will also have no effect when φ1 is simultaneously changed such that∆φ12 remains con-
stant: while changing φ2 and φ1 keeping ∆φ12 and φ3 constant will alter ∆φ23, we can
always change φ3 such that ∆φ23 remains unchanged. In short, as long as φ3 is crossed
during the night (which it will for most values ofφ1 andφ2), changingφ1 andφ2 keeping
∆φ12 constant, does not change the dynamics; the times t1 and t2 at whichφ1 andφ2 are
crossed, respectively, do not change.
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Figure 3.7: The optimal shape of the instantaneous phase response curve Z (φ) arises as a trade-off
between linearity and stability. The linearity (A) is quantified via

∫ T
0 d t (φ(t )−φlin(t ))2, which is

the average deviation of the mean input-output relation φ(t ) away from the most linear solution
φlin(t ) = ωt . The stability (B) is quantified via

∫ T
0 d t (φ(t )−φstab(t ))2, which is the average devi-

ation of φ(t ) away from the most stable solution φstab(t ), given by Eq. 3.47. These measures are
computed as a function of the intrinsic frequency ω0 and the width of the deadzone ∆φ12, for dif-
ferent values of ε, inside the Arnold Tongue of scenario 1; note that smaller values correspond to
higher linearity and stability, respectively. Superimposed is a parametric plot of the optimal intrin-
sic frequencyω∗

0 (D) and optimal width of the dead-zone∆φ∗
12(D) that maximize the mutual infor-

mation for a given D . The dots denote the values of D to which ω∗
0 (D) and ∆φ∗

12(D) correspond;
the value of D for which the ε of a panel is the optimal coupling strength ε∗ is given near the top of
the Arnold tongue. It is seen that for small D , the optimal parameters (ω∗

0 (D),∆φ∗
12(D),ε∗(D)) that

maximize the mutual information are those that make the input-output relation φ(t ) most linear
(top left panel A), while for large D , the optimal parameters are those that make the system very
stable (bottom right panel B). Other parameters: ∆φ23 =π/2.

Because φ23 is not critical, we kept ∆φ23 = π/2, and then performed very extensive
simulations to determine the optimal coupling strength ε∗, speedω∗

0 and optimal dead-
zone ∆φ∗

12 that maximize the mutual information, as a function of D . Fig. 3.6 shows a
parametric plot of ε∗(D),ω∗

0 (D) and ∆φ∗
12(D), with D being the parameter that is varied.

It is seen that for very low D , the optimal coupling strength ε∗ is small, the optimal in-
trinsic frequencyω∗

0 is close toω, and the optimal value of∆φ∗
12 is small. As the diffusion

constant is increased, ε∗ rises but ω∗
0 initially remains close to ω and then increases too.

The optimal value of ∆φ12, however, first rises and then falls again.
The behaviour of ∆φ∗

12 can again be understood as a trade-off between linearity and
stability. This is illustrated in Fig. 3.7. The figure shows for different values of ε the linear-
ity and the stability of the input-output relation φ(t ) as a function of ∆φ12 and ω0, com-
puted within the deterministic Arnold tongue of scenario 1 (where the mutual informa-
tion is highest). The linearity of φ(t ) is quantified via

∫ T
0 d t (φ(t )−φlin(t ))2, which is the
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average deviation of φ(t ) away from the most linear input-output relation, φlin(t ) = ωt .
The stability of φ(t ) is quantified via

∫ T
0 d t (φ(t )−φstab(t ))2, which is the average devia-

tion of φ(t ) away from the most stable input-output relation φstab(t ), given by Eq. 3.47.

The following observations can be made. First, the width of the Arnold tongue (the
range ofω0 that permits a deterministic solution) decreases as∆φ12 increases. Secondly,
the linearity is maximal in the range 1 < ω0/ω < 1.5, and tends to increase with ∆φ12:
in the deadzone ∆φ12 the system evolves freely with speed ω0, which makes φ(t ) more
linear, especially when ω0 ∼ ω. In contrast, the stability is highest when ω0/ω is large
and ∆φ12 is small, particularly for higher values of ε. The large magnitudes of ω0 and ε

mean that at the beginning of the day the system is strongly driven, 〈φ̇〉 ≈ ε+ω0, and the
small deadzone ∆φ12 means that after the system has crossed φ1, it quickly reaches φ2,
where, with ε= ε− >ω0, the system is then confined (see Fig. 3.1).

Fig. 3.7 also shows superimposed a parametric plot of the optimal ∆φ∗
12(D) against

the optimalω∗
0 (D). The colored dots denote the diffusion constants for which (ω∗

0 ,∆φ∗
12)

are optimal; the diffusion constant for which the ε of a panel is the optimal coupling
strength ε∗ is shown near the top of the Arnold tongue. It is seen that for very small D ,
the optimal system parameters (ω∗

0 ,∆φ∗
12,ε∗) put the system in the regime where φ(t ) is

linear (top left panel A); increasing ∆φ∗
12 would not make the system significantly more

linear, since ε∗ is still very small. Increasing D raises ε∗, while ω∗ remains close to ω.
The optimal width of the deadzone ∆φ∗

12 now increases, because for the higher value of
ε∗ the system becomes significantly more linear when ∆φ∗

12 is increased. Beyond D =
1/T , however, linearity is sacrificed for stability. The optimal coupling strength ε∗ and
intrinsic frequency ω∗ increase, while the optimal size of the deadzone decreases, to
maximize stability. Indeed, when the noise is even larger still, the width of the deadzone
reduces to zero and the coupling strength and intrinsic frequency become even larger:
during the day the system is rapidly driven toφ2, where it then remains strongly confined
till the beginning of the night (see Fig. 3.1 and also Fig. 3.5C). In this limit, the clock
transmits one bit of information, and the system can only distinguish between day and
night.

Fig. 3.6 thus generalises the finding of Fig. 3.5 that corresponds to a fixed deadzone
and shows that the optimal shape of the instantaneous phase response curve can be
understood as a trade-off between linearity and stability.

3.4. THEORY

The simulation results can be described quantitatively via three different theories, which
each accurately describe a particular regime of parameters: The linear-noise approx-
imation (LNA) describes the regime of strong coupling and low diffusion; the phase-
averaging method (PAM) holds in the low diffusion, weak coupling regime; and the linear-
response theory (LRT) applies in the regime of high noise and weak coupling. Here, we
have borrowed the terminology LNA from the name of the theory to describe biochem-
ical networks that is based on the same underlying principles: indeed, rather than lin-
earising the Chemical Langevin Equation around the fixed point given by the mean-field
chemical rate equations and taking the noise at that fixed point, we here linearise the
return map F (φ) around its fixed point, and compute the noise at that fixed point. The
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results of the respective theories in their regime of validity are shown in Fig. 3.4. A more
detailed comparison between the simulation results and the theoretical predictions, dis-
cussed below, is shown in Fig. 3.8, where ε and D are varied for two different values of
ω0.

3.4.1. LINEAR-NOISE APPROXIMATION

The linear-noise approximation (LNA) is expected to be accurate when the driving is
strong compared to the diffusion constant, so that the system closely follows the deter-
ministic solution φ∗(t ), which is given by the return map of Eq. 3.44: φ∗(t ) =φ∗(t +T ) =
F (φ∗(t )). Because in this regime the deviations from the deterministic solution are small,
we can expand F (φ) up to linear order in δφ=φ−φ∗ to obtain F (φ∗+δφ), see Eq. 3.45.
This makes it possible to derive how a deviation from the deterministic solution at time
t will relax to the limit cycle at time t +T : δφ(t +T ) = F ′(φ∗)δφ(t ) (see Eq. 3.46). The
quantity F ′(φ∗) thus determines the stability of the system near the deterministic fixed
point. It can be readily obtained from the deterministic solutions.

Given a variance at time t , 〈δφ(t )2〉, the variance at time t +T , 〈δφ(t +T )2〉, is given
by two contributions:

〈δφ(t +T )2〉 = F ′2 (φ∗)〈δφ(t )2〉+V
[
φ(t +T )|φ∗(t ))

]
. (3.48)

The first contribution is a deterministic contribution, which is determined by how a de-
viation δφ(t ) =φ(t )−φ∗(t ) at time t regresses deterministically to the mean at time t+T :
δφ(t +T ) = F ′(φ∗)δφ(t ). The second contribution describes the variance of the distribu-
tion P (φ(t +T )|φ∗(t )) of φ(t +T ) at time t +T , given that at time t the system was at the
deterministic solutionφ∗(t ); in general, we should instead compute the variance at t+T
for an arbitrary initial φ(t ) = δφ(t )+φ∗(t ), but to leading order in small δφ it is suffi-
cient to evaluate the noise at the deterministic solution φ∗. It is important to note that
the variance V

[
φ(t +T )|φ∗(t ))

]
depends not only on the diffusion constant, but also on

the deterministic force, as in a canonical LNA description: For example, in the simplest
possible noisy dynamics, δ̇x =−kδx(t )+η(t ), with 〈η(t )η(t ′)〉 = 2Dδ(t−t ′), the determin-
istic contribution to the variance 〈δx(t +T )2〉 at time t +T , given the variance 〈δx(t )2〉
at time t , is 〈δx(t )2〉e−2kT , while the stochastic contribution to the variance at time t +T
is V [δx(t +T )|x∗(t )] = (D/k)(1− e−2kT ), which indeed depends on the force constant k.
However, in the limit that the force is weak, the stochastic contribution is given by the
variance of free diffusion: V [δx(t+T )|x∗(t )] = 2DT . We assume, and subsequently verify
numerically, that a similar simplification applies for our phase oscillator model. Indeed,
except at the boundaries φ1, φ2, and φ3, our phase dynamics reduces to diffusion with a
constant drift, for which it is rigorously true that V

[
φ(t +T )|φ∗(t ))

]= 2DT ; our assump-
tion hence amounts to neglecting any corrections to the integrated noise due to the brief
“kicks” at these boundaries. Eq. 3.48 then reduces to

〈δφ(t +T )2〉 = F ′2 (φ∗)〈δφ(t )2〉+2DT. (3.49)

This expression constitutes the fluctuation-dissipation relation for this system. In steady
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state, 〈δφ(t +T )2〉 = 〈δφ(t )2〉, from which it follows that

〈δφ(t )2〉 = 2DT

1−F ′2 (φ∗)
. (3.50)

Clearly, the variance depends not only on the diffusion constant, but also on the stability,
which increases with the coupling strength; as derived below Eq. 3.46, for scenario 1,
F ′(φ∗) = (ω0 −ε−)/(ω0 +ε+) decreases (meaning the system becomes more stable) as ε−
and ε+ increase.

In this linear-noise approximation, the distribution of the phase at time t is a simple
Gaussian with a mean φ(t ) that is given by the deterministic solution, φ(t ) = φ∗(t ), and
a variance that is given by Eq. 3.50:

P (φ|t ) = 1√
2πσφ

exp− (φ−φ(t ))2

2σ2
φ

, (3.51)

where σφ ≡
√
〈δφ2〉. This variance is, in this approximation, independent of the phase.

To derive the mutual information, it is convenient to invert the problem and look for
the distribution of possible times t , given φ. This can be obtained from Bayes’ rule:

P (t |φ) = P (t )
P (φ|t )

P (φ)
(3.52)

where P (t ) = 1/T is the uniform prior probability of having a certain time and P (φ) is
the steady state distribution of φ, which in the small noise limit can be computed via
P (t )d t = P (φ)dφ. If the noise ξ is small compared to the mean, then P (t |φ) will be a
Gaussian distribution that is peaked around t∗(φ), which is the best estimate of the time
given the phase [56, 62, 93]:

P (t |φ) ' 1√
2πσ2

t

exp

[
− (t − t∗(φ))2

2σ2
t

]
. (3.53)

Here σ2
t =σ2

t (t∗) is the variance in the estimate of the time, and it is given by [56]

σ2
t =σ2

φ

(
d t

dφ

)2

. (3.54)

We note that σ2
t does depend on t because the slope dφ/d t depends on t . Indeed, while

the LNA assumes that σ2
φ is independent of φ, it does capture the fact that changing ε

and ω0 can affect the mutual information not only by changing the noise σ2
φ but also via

the slope dφ/d t of the input-output relation φ(t ).
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The mutual information can now be obtained from:

I (φ; t ) = H(t )−〈
H(t |φ)

〉
φ (3.55)

= log2 T −
〈

1

2
log2

(
2πeσ2

φ

(
d t

dφ

)2)〉
φ

(3.56)

= log

 T√
2πeσ2

φ

+ 1

T

∫ T

0
d t log

dφ

d t
, (3.57)

where 〈. . .〉φ denotes an average over P (φ), and we have exploited that in the LNA the

variance σ2
φ is independent of φ. For the model presented here, φ(t ) = φ∗(t ) is piece-

wise linear, and the second integral can be obtained analytically, for each of the scenar-
ios; for scenario 1, for example, the second term is 1/T

(
t1 log(ω0 +ε+)+ (t2 − t1) logω0+

(T /2− t2) log(ω0 −ε−)+T /2logω0
)
.

Fig. 3.4 shows that the LNA accurately predicts the mutual information I
ω

opt
0

(φ; t ) in

the regime that the coupling strength ε is large and the diffusion constant D is small. A
more detailed comparison is shown in Fig. 3.8, which shows the Kullback-Leibler diver-
gence DK L(Pn ||Pa) between the distribution Pn = Pn(φ|t ) obtained in the simulations
and Pa = Pa(φ|t ) as predicted by LNA. Panels A and B show the result forω0/ω= 1, while
panels C and D show the results for ω0/ω = 1.05. Moreover, panels A and C show the
results as a function of D for two values of ε, while panels B and D show the results as a
function of ε for two values of D .

Panels A and C show that as D is decreased at fixed ε, the LNA becomes accurate for
small D , as expected. Panels B and D show that for large D , the LNA never becomes ac-
curate, even for large ε. However, for large values of ε, the assumption that the stochastic
contribution to the variance is given by that of free diffusion, V [δφ(t +T )|φ∗(t )] ' 2DT ,
breaks down. This is also the reason why for the smaller value of D (crosses in panels B
and D), the LNA works very well for low values of ε, but then becomes slightly less ac-
curate for higher values of ε. Indeed, for ε = ε− > ω0, F ′ = 0, and the key assumption of
LNA—namely that the dynamics can be expanded to linear order around the determin-
istic fixed point—breaks down.

Comparing panel C against panel A and panel D against panel B shows that LNA
is less accurate in the small D/ε regime when ω0/ω = 1.05 (panels C/D) than when
ω0/ω= 1.0 (panels A/B). More specifically, while LNA is very accurate for D < 10−2/T for
both values of ε when ω0/ω = 1.0 (panel A), LNA becomes less accurate for D < 10−2/T
whenω0/ω= 1.05 and ε is small, i.e. ε/ω= 0.1 (panel C); only for ε/ω= 0.9 is LNA still ac-
curate in this regime. Similarly, while LNA is very accurate for ε/ω< 1 when D = 10−3/T
and ω0/ω= 1.0 (panel B), LNA becomes less accurate for ε/ω< 0.5 when D = 10−3/T yet
ω0/ω= 1.05 (panel D). This observation can be understood by noting that whenω0 is in-
creased, the system moves to the boundary of the Arnold Tongue of scenario I, especially
when ε is small (see Fig. 3.2). The system then switches under the influence of noise
between the solution of scenario I and that of scenario II, meaning that the response
becomes non-linear and LNA breaks down. Interestingly, however, another method, de-
scribed in the next section, accurately describes this regime.
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Figure 3.8: Comparison between simulation results and three different theories: linear-noise ap-
proximation (LNA), phase-average method (PAM), and linear-response theory (LRT). The compar-
ison is performed by computing the Kullback-Leibler divergence DK L(Pn ||Pa ) between Pn (φ|t ) as
obtained in the simulations and Pa (φ|t ) as predicted by the theory. For two values of ω0, namely
ω0/ω= 1 (panels A,B) and ω0/ω= 1.05 (panels C,D), we show DK L(Pn ||Pa ) as a function of D for
two values of ε (panels A,C) and DK L(Pn ||Pa ) as a function of ε for two values of D (panels B,D).
It is seen that the LNA accurately predicts the regime of strong coupling and low noise; PAM the
regime of weak coupling and weak noise; and LRT the regime of high noise and weak coupling.
Other parameters: ∆φ12 =∆φ23 =π/2 for all data points.

3.4.2. PHASE-AVERAGING METHOD

In the limit that the coupling ε is weak, the diffusion constant D is small, and the intrinsic
frequency ω0 is close to the driving frequency ω, we expect that the evolution of φ is
close to that of the free-running oscillator, φ0(t ) = ω0t +φ0. In this regime the phase
will exhibit fluctuations that are slow, occurring on time scales much larger than the
intrinsic period T0. The detailed coupling within a clock cycle becomes irrelevant, and
only the average coupling over a clock period matters. This leads to the notion of phase
averaging, in which P (φ(t )−ωt |t ) no longer depends on t : P (φ(t )−ωt |t ) = P (φ(t )−ωt ) ≡
P (ψ), with ψ≡φ(t )−ωt .

Following Pikovsky [22], we now make this intuitive notion concrete by rewriting the
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coupling term as

Q(φ, t ) = Z (φ)L(t ) (3.58)

=∑
k

∑
l

ak bl e i (kφ+lωt ). (3.59)

If the coupling and the noise are weak, ε→ 0,D → 0, we may expect that φ'ω0t +φ0 for
all times t . If we substitute this into Eq. 3.59, we find

Q(φ, t ) =∑
k

∑
l

ak bl e i kφ0 e i (kω0+lωt ). (3.60)

When ω ≈ ω0, the terms k = −l contribute most strongly to the integral. These terms
correspond to variations in the force on long time scales. We thus expect that in the
regime that ε,D → 0 and ω≈ω0, where the phase is expected to follow φ≈ω0t +φ0, the
terms k =−l yield the strongest contributions to the force:

Q(φ, t ) =∑
k

ak b−k e i k(φ−ωt ) (3.61)

=
∫ T

0
d t ′Z (ψ+ωt ′)L(t ′) (3.62)

=Q(ψ). (3.63)

where in Eq. Eq. 3.62 we have introduced the new phase variable ψ≡ φ−ωt . The force
Q(ψ) is commonly referred to as the phase-response curve; it is thus a convolution of the
instantaneous phase-response curve Z (φ) and the light-signal L(t ).

The temporal evolution of ψ, ψ̇= φ̇−ω, is, using Eq. 3.25:

dψ

d t
=ω0 −ω+εQ(ψ)+ξ(t ) (3.64)

=−ν+εQ(ψ)+ξ(t ), (3.65)

with ν = ω−ω0. The first two terms on the right-hand side are the deterministic force,
which can be written as the derivative of a potential V (ψ)

−ν+εQ(ψ) =−dV (ψ)

dψ
, (3.66)

with the potential given by

V (ψ) = νψ−ε
∫ ψ

−π
Q(x)d x. (3.67)

Indeed, the evolution of ψ can be described as that of a particle in a potential V (ψ),
which is a 2π-periodic potential with a slope given by ν=ω−ω0.

The evolution of the probability density P (ψ, t ) is given by the Fokker-Planck equa-
tion corresponding to Eq. 3.65:

∂t P (ψ, t ) =−∂ψ
[
(−ν+εQ(ψ))P (ψ, t )

]+D∂2
ψP (ψ, t ) (3.68)

=−∂J (ψ, t )

∂ψ
, (3.69)
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where we have defined the probability current

J (ψ, t ) =−P (ψ, t )
dV (ψ)

d x
−D

∂P (ψ, t )

∂t
. (3.70)

In steady state, ∂P (ψ, t )/∂t = 0, which yields the following stationary solution that is
2π-periodic in ψ:

P (ψ) = 1

C

∫ ψ+2π

ψ
e

V (ψ′)−V (ψ)
D dψ′. (3.71)

Here, C is the normalization constant.

Fig. 3.4 shows that the phase-averaging method (PAM) accurately predicts the mu-
tual information I (φ; t ) in the regime that both the coupling strength ε and the diffusion
constant D are small. The more detailed comparison based on the Kullback-Leibler di-
vergence DK L(Pn ||Pa) between the distribution Pn = Pn(φ|t ) obtained in the simulations
and Pa = Pa(φ|t ) as predicted by PAM confirms this interpretation: as shown in panel B
of Fig. 3.8, when ω0/ω = 1.05, PAM is accurate for D < 10−2/T when ε/ω = 0.1 (green
crosses), while LNA breaks down in this regime (blue crosses). Similarly, as illustrated
in panel D, when ω0/ω = 1.05, PAM is accurate for ε/ω < 0.7 when D = 10−3/T (green
crosses), whereas LNA again breaks down in this regime (blue crosses).

While the LNA breaks down when the distribution P (φ|t ) becomes non-Gaussian
as the coupling becomes too weak, the PAM accurately describes P (φ|t ) in the low-
coupling, low-noise regime, as it allows for non-Gaussian distributions. However, the
PAM does assume that φ(t ) follows ωt . As a result it breaks down when the coupling
becomes large, causing the average input-output relation φ(t ) to deviate markedly from
ωt , an effect that can be captured by the LNA. PAM also breaks down when ε is small and
ω≈ω0, yet D is large: now the large diffusion constant causes the instantaneous φ(t ) to
deviate markedly from ωt . This regime can, however, be described by linear-response
theory.

3.4.3. LINEAR RESPONSE THEORY

When the coupling strength is weak yet the diffusion constant is large, φ(t ) at any mo-
ment in time will tend to deviate strongly fromω0t , but the steady-state distribution will
be close to that of a noisy, free running oscillator, P0(φ) = 1/(2π). The full distribution
can then be obtained as a perturbation to this distribution. This is the central idea of
linear-response theory (LRT).

We start with the Fokker-Planck equation for the evolution of P (φ, t ):

∂t P (φ, t ) = D∂2
φP (φ, t )+ω0∂φP (φ, t )+L(t )∂φ

[
Z (φ)P (φ, t )

]
. (3.72)

We now consider the external signal L(t )Z (φ) to be a weak perturbation of the free-
running system. To this end, we rewrite the above equation as:

∂t P (φ, t ) = [F0 +εF1(t )]P (φ, t ) (3.73)
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where F0 is the operator that defines the time evolution of the unperturbed system and
F1 that due to the perturbation:

F0 =+D∂2
φ+ω0∂φ (3.74)

F1(t ) =+L(t )∂φZ (φ)+L(t )Z (φ)∂φ (3.75)

Furthermore, we expand P (φ, t ) as:

P (φ, t ) ' p0(φ, t )+εp1(φ, t )+ε2p2(φ, t )+O (ε3) (3.76)

Substituting this expression into Eq. 3.73, and keeping only terms up to order ε, we find:

O (0) F0p0(φ, t ) = ∂t p0(φ, t ) (3.77)

O (ε) ∂t p1(φ, t )−F0p1(φ, t ) =F1p0(φ, t ) (3.78)

We are interested in the solutions that satisfy the periodic boundary conditions:

pi (φ, t ) = pi (φ+2π, t ) (3.79)

∂φpi (φ, t ) = ∂φpi (φ+2π, t ), (3.80)

for both i = 0,1. Moreover, in steady state, for t →∞, it must hold that

pi (φ, t ) = pi (φ, t +T ). (3.81)

Eq. 3.77 describes the diffusion of a particle with drift. The steady-state solution,
which obeys Eqs. 3.79-3.81, is

lim
t→∞p0(φ, t ) = 1

2π
. (3.82)

Clearly, p0(φ, t ) in steady state is flat, which means that any deviation in the steady-state
solution for P (φ, t ) from the flat distribution must be contained in p1(φ, t ). Since p1(φ, t )
is, by construction, a small perturbation, this approach will be accurate only when the
full distribution is sufficiently flat, which means that the diffusion constant cannot be
too small.

To obtain p1(φ, t ), we proceed by substituting the solution for p0(φ, t ), Eq. 3.82, into
Eq. 3.78, yielding

∂t p1(φ, t )−D∂2
φp1(φ, t )−ω0∂φp1(φ, t ) =L(t )p0(φ, t )∂φZ (φ). (3.83)

The solution to this non-homogeneous heat equation is given by

p1(φ, t ) =
∫ 2π

0
dξG(φ−ω0t ,ξ, t ) f (ξ)

+
∫ 2π

0

∫ t

0
dτdξG(φ−ω0t ,ξ, t −τ)A(ξ,τ), (3.84)

where f (φ) is the initial condition, G(φ−ω0t ,φ0, t , t0) is the Green’s function of the un-
perturbed diffusion operator with drift, and A(φ, t ) ≡ L(t )p0(φ, t )∂φZ (φ). This expres-
sion holds for any t , not only for the steady-state solution.
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To obtain the steady-state solution, we aim to find the initial condition P (φ, t ) = f (φ)
that folds back onto it self after a time T : P (φ, t +T ) = P (φ, t ) = f (φ). To this end, we
evaluate Eq. 3.84 for t = T , to arrive at the Fredholm equation of the second kind:

f (φ) =
∫ 2π

0
dξ f (ξ)G(φ,ξ, t = T )+Q(φ) (3.85)

where Q(φ) is given by Eq. 3.183. The above equation can be solved analytically, see
Appendix 3.8.

Fig. 3.8 and Fig. 3.4 show, respectively, that the LRT accurately describes P (φ, t ) and
hence the mutual information in the regime that the coupling is weak and the diffusion
constant is large. In contrast to the phase-averaging method, the LRT breaks down for
smaller diffusion constant. The reason is that then P (φ, t ) deviates increasingly from
the uniform distribution, p0(φ, t ) = 1/(2π), and the full solution P (φ, t ) can no longer be
treated as a weak perturbation to p0.

3.5. DISCUSSION

The phase-response curves that have been measured experimentally often have a pos-
itive lobe and a negative one, separated by a deadzone where the coupling strength is
zero [97]. However, the width of the deadzone varies considerably from organism to or-
ganism. Here, we asked how the optimal phase-response curve depends on the intrinsic
noise in the system, using the mutual information as a performance measure.

Information theory predicts that the number of signals that can be transmitted reli-
ably through a communication channel depends on the shape of the input distribution,
the input-output relation, and the noise in the system. These arguments apply to any
signalling system and the circadian clock is no exception.

When the input distribution is flat and the noise is low, then, in general, the optimal
input-output relation is linear. The phase-oscillator model of the clock obeys this rule:
the input distribution p(t ) = 1/T is flat, and the optimal input-output relation φ(t ) is
indeed linear in the low-noise regime (Fig. 3.5B,C). Such a linear input-output relation
is obtained for an intrinsic period that is close to 24 hrs and for a deadzone that is rela-
tively large (Figs. 3.6 and 3.7). Our analysis thus predicts that less-noisy circadian clocks
exhibit a relatively large deadzone. Interestingly, the rule also explains why for a con-
stant deadzone, in the low-noise limit, the optimal intrinsic frequency decreases as the
coupling strength increases (see Fig. 3.5A).

In the large-noise regime, containment of noise becomes paramount. This inevitably
requires a large coupling strength. While a strong coupling distorts the input-output re-
lation, which tends to reduce information transmission, it also reduces the noise, en-
hancing information transmission (Fig. 3.5B,C). The stability is further enhanced by in-
creasing the intrinsic frequency and reducing the width of the deadzone (Fig. 3.7). In-
deed, our results predict that noisy circadian systems feature a smaller deadzone and a
higher intrinsic frequency.

These results have been obtained by reducing the circadian clock to a phase-oscillator
model. It is useful to briefly review the generality and limitations of this approach. The
mutual information obeys I (n; t ) ≥ I (R,φ; t ) ≥ I (φ; t ). Hence, any mapping of n to φ
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makes it possible to put a lower bound on the mutual information. The bound will be
tight when the phase, according to this mapping, contains most of the information on
time.

Another question is whether the model that we use to describe the evolution of the
phase is accurate. Phase-oscillator models have commonly been employed to describe
oscillatory systems, yet they are typically described as being valid in the limits of weak
driving and low noise: this ensures that the coupled system stays close to the limit cycle
of the unperturbed, deterministic system, so that the coupling function and the diffu-
sion constant can be approximated by their values on that limit cycle [22]. Here, having
derived the phase oscillator description in the weak coupling limit, we then proceed to
study it for arbitrary values of ε and D . This might at first glance seem self-contradictory.
It should be realized, however, that biochemical noise and coupling can have two dis-
tinct effects: they can affect the dynamics along the limit cycle, i.e. of φ, and/or they can
cause the system to move away from the limit cycle. Only perturbations in the latter di-
rection, orthogonal to the limit cycle, need be small for the phase oscillator description
to apply. Moreover, ε and D are dimensionful parameters that can only be meaningfully
be said to be large or small in comparison to another parameter, and the appropriate pa-
rameter for comparison is different for perturbations along and orthogonal to the limit
cycle. Thus, it is entirely possible for ε and D to be small compared to the rate of relax-
ation to the limit cycle, implying that neither the external driving nor the noise can force
the system far from the limit cycle and that the phase oscillator model is a good approx-
imation, but simultaneously for one or both of ε and D to be large compared to ω0, so
that perturbations to the phase dynamics are not weak. We imagine that just such a sit-
uation holds here: D and ε can become bigger than ω0—meaning that the noise and the
coupling can induce large changes in φ—but, even for large D/ω0 and ε/ω0, the system
in our model does not significantly move off the limit cycle. It remains an open ques-
tion how for a given, particular clock biochemical noise and strong coupling to an en-
trainment signal affect the dynamics: how far does the system move away from its limit
cycle, and how much do the diffusion constant and the coupling function then change?
The detailed and minimal biochemical network models that have been developed for
the cyanobacterium Synechococcus elongatus would make it possible to investigate this
question in detail [11, 12, 15, 17, 28, 102–104]

Our work shows that the behaviour of the coupled phase oscillator can be accurately
described by three different theories, which each work best in a different parameter
regime. In the regime of weak coupling, low noise, and intrinsic frequency close to the
driving frequency, the phase-averaging method is very accurate. In the regime that the
driving is strong compared to the diffusion constant, the linear-noise approximation is
most accurate. These are the two most relevant regimes for understanding the design of
circadian clocks. There is also another regime, however, namely that of weak coupling
and high noise, and in this regime linear-response theory is very accurate. That linear-
response theory can describe any regime at all is perhaps surprising, since it has been
argued that this theory should be applied to phase oscillators only with the greatest care
[22]. The argument is that small but resonant forcing can have effects on φ that build
up over time, meaning that the effect of perturbations that are nominally of order ε, and
thus small, will eventually become large with time. However, noise can pre-empt this ac-
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cumulation of resonant perturbations by effectively randomizing the phase and erasing
the memory of earlier perturbations before they are able to accumulate over time. As a
result, the full distribution of the phase can be written as a small perturbation around
the uniform distribution, and this does make it possible to apply linear-response the-
ory. While this regime is probably less relevant for understanding biological clocks, this
approach may be useful in other contexts.

Finally, we have focused on the optimal design of the clock as a function of the intrin-
sic noise in the system. As Pfeuty et al. have shown, fluctuations in the input signal are
an important consideration for understanding the design of circadian clocks [97]. It will
be interesting to see whether maximizing the mutual information will reveal new design
principles for clocks driven by fluctuating signals.
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APPENDIX:

3.6. ARNOLD TONGUE OF THE DETERMINISTIC MODEL

For completeness, we give here the inequalities for all scenarios. Scenario 1: As dis-
cussed in the main text: φ3 −2π<φs <φ1; t2 < T /2 < t3. If ε− ≤ω0, then

T ≤ 2π−ε−∆φ12/ω0

ω0 −ε−/2
(3.86)

T > 2π+ε+∆φ12/ω0

ε+/2+ω0
(3.87)

T < 2π+ε+∆φ12/ω0 +∆φ23(ε++ε−)/(ω0 −ε−)

ε+/2+ω0
(3.88)

T > (∆φ13 −2π)(ε++ε−)/(ω0 +ε+)+2π−ε−∆φ12/ω0

ω0 −ε−/2
(3.89)

If ε− >ω0 then

T ≤ 2(2π−∆φ12)

ω0
(3.90)

T > 2π−∆φ12 + (∆φ12/ω0)(ε++ω0)

ε+/2+ω0
(3.91)

T > 2∆φ23

ω0
(3.92)

Scenario 2: φ1 <φs <φ2; 0 < t2 < T /2 < t3 < t1 < T . For ε− <ω0, the evolution of φ(t )
is given by

φs +ω0t2 + (−ε−+ω0)(T /2− t2)+ω0T /2 =φs +2π. (3.93)
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This yields:

t2 = 2π−T (ω0 −ε−/2)

ε−
< T /2 & > 0 (3.94)

t3 = ∆φ23

ω0 −ε−
+ t2 > T /2 (3.95)

t1 = t2 −∆φ12/ω0 +T < T. (3.96)

φs =φ2 −ω0t2 >φ1. (3.97)

This yields the following inequalities:

T > 2π

ω0
(3.98)

T < 2π

ω0 −ε−/2
(3.99)

T < 2π+∆φ13ε−
ω0 −ε−/2

(3.100)

T > 2π−ε−∆φ12/ω0

ω0 −ε−/2
(3.101)

If ε− >ω0, the equation to solve is

φs +ω0t2 +ω0T /2 =φs +2π. (3.102)

The solution is

t2 = 2π

ω0
−T /2 < T /2 (3.103)

t3 =∞> T /2. (3.104)

t1 = t2 −∆φ12/ω0 +T < T. (3.105)

φs =φ2 −ω0t2 >φ1 & <φ2. (3.106)

This yields the following inequalities

T > 2π/ω0 (3.107)

T > 2(2π−∆φ12)

ω0
(3.108)

T < 4π/ω0 (3.109)

This scenario is stable, becauseφ(t ) between t = 0 and t = t2 is steeper thanφ(t ) between
t2 and T /2.

Scenario 3: φ2 <φs <φ3; 0 < t2 < T /2. If ε− <ω0 then

φs + (−ε−+ω0)T /2+ω0T /2 =φs +2π. (3.110)

This equation does not depend on ti . There is only one period that fits the solution:

T = 2π

ω0 −ε−/2
. (3.111)



3.6. ARNOLD TONGUE OF THE DETERMINISTIC MODEL

3

69

This period is on the boundary of the Arnold tongue of scenario 2. This solution seems
degenerate, being neither stable nor unstable.

If ε− >ω0, the equation that solves φ(t ) is

φs + (−ε−+ω0)t2 +ω0T /2 =φs +2π. (3.112)

The solution is

t2 = 2π−ω0T /2

−ε−+ω0
(3.113)

φs =φ2 +ω0T /2−2π. (3.114)

The requirement that t2 > 0, yields the inequality

T > 4π

ω0
, (3.115)

because the denominator of Eq. 3.113 is negative. The requirement that t2 < T /2 yields

2π−T (ω0 −ε−/2)

ω0 −ε−
< 0. (3.116)

Since the denominator is negative for ε− > ω0, this means that (2π−T (ω0 − ε−/2)) > 0.
When ε− > 2ω0, this is true for any T . When ε− < 2ω0 (but still larger than ω0 because
otherwise there is no solution at all, see above), then

T < 2π

ω0 −ε−/2
. (3.117)

The constraints φ2 <φs <φ3 yield

T > 4π

ω0
(3.118)

T < 2(∆φ23 +2π)

ω0
. (3.119)

This solution is rather strange. When the light comes up, the clock is being driven back-
wards. The solution seems stable, though. In fact, it seems extremely stable: after one
period, the system is back on its limit cycle.

Scenario 4: φ3 −2π < φs < φ1; 0 < t1 < T /2 < t2. The equation that determines the
steady state is

φs + (ω0 +ε+)t1 +ω0(T /2− t1)+ω0T /2 =φs +2π. (3.120)

The solution is

t1 = 2π−ω0T

ε+
< T /2 & > 0 (3.121)

t2 = t1 + ∆φ12

ω0
> T /2 (3.122)

φs =φ1 − (ε++ω0)t1 =φ1 − (ε++ω0)(2π−ω0T )/ε+ (3.123)
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The conditions for T are

T ≤ 2π

ω0
(3.124)

T > 2π

ω0 +ε+/2
(3.125)

T < 2π+∆φ12ε+/ω0

ε+/2+ω0
(3.126)

T > ε+∆φ13 +2πω0

ω0(ω0 +ε+)
. (3.127)

Scenario 5: φ3 −2π<φs <φ1; t1 > T /2. The governing equation is

φs + (ε++ω0)T /2+ω0T /2 =φs +2π. (3.128)

This means that

T = 2π

ω0 +ε+/2
. (3.129)

Clearly, for each ε+ there is only one period, not a range of periods. Since φ(T /2) =
φs + (ε+ +ω)T /2, which must be smaller than φ1, and φs > φ3 − 2π, we find that there
exists only a solution if ∆φ13 < 2πω0/(ε++ 2ω0). Hence, for given φ1 and φ3, this puts
an upper bound on ε+. If a solution exists, the starting phase φs , must lie in the range
φ3 −2π<φs <φ1 −π(ε++ω0)/(ε+/2+ω0). Moreover, the solution is neutral; it does not
relax back to a unique φs . In fact, this is a very general observation: if the solution is
neutral, it means that there can only be locking for one value of the period. Being able to
locking over a range of periods of the driving signal, means that the clock should be able
to adjust its period by changing the phase; but a neutral solution means that changing
the phase does not lead to a change in its period.

Scenario 6: φ3 − 2π < φs < φ1; 0 < t1 < t2 < t3 < T /2. This scenario can only arise
when ε− < ω0, because otherwise the system never makes it to φ3 before the sun sets.
The equation to be solved is then:

φs + (ε++ω0)t1 +∆φ13 + (ω0 +ε+)(T /2− t3)+ω0T /2

=φs +2π. (3.130)

This equation can be solved by noting that ∆φ12 =ω0(t2 − t1) and ∆φ23 = (−ε−+ω0)(t3 −
t2). It follows that there is only one period that satisfies the above equation:

T = 2π−∆φ23 +ε+∆φ12/ω0 + (ε++ω0)∆φ23/(−ε−+ω0)

ω0 +ε+/2
(3.131)

Clearly, for a given ε− and ε+ there is only one period, not a range of periods to which
the system can entrain. This means that the solution is neutral, which can indeed be
understood by noting that the initial slope at t = 0, ω0 + ε+, is the same as that t = T /2.
The condition for the solution to exist is that φ(T /2) = 2π+φs −ω0T /2 >φ3. This yields
for φs :

φ3 −2π+ω0T /2 <φs <φ1. (3.132)
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There is thus only a solution when

T < 2(2π−∆φ13)

ω0
. (3.133)

One could use this condition to determine the range of ε+/− over which there is a solu-
tion, given φ1,φ2,φ3. But since this scenario only yields one line in the phase diagram,
we do not pursue this further.

Scenario 7: φ1 <φs <φ2; 0 < T /2 < t2 < t3 < t1. The governing equation is

φs +ω0T /2+ω0T /2 =φs +2π. (3.134)

This indeed yields only one solution

T = 2π

ω0
. (3.135)

Indeed, there only exists a solution when the driving frequency equals the intrinsic fre-
quency, which is to be expected, since with this solution the system does not see the
driving. The solution exists only if ∆φ12 >π. This solution is neutral, in that all solutions
φ1 < φs < φ2 are valid, for all values of ε−/+. One may wonder what that implies for the
dynamics. If one would perform a simulation for ε−/+ > 0 and ω=ω0, and if one would
then start withφ1 <φs <φ2, then due to the noise the simulation would initially perform
a random walk where initially, at the beginning of each day, the phase of the clock would
fluctuate between φ1 and φ2. However, once the oscillator due to noise would cross the
boundary φ1, then the system will be driven to a solution that is described under sce-
nario 1.

Scenario 8: φ1 <φs <φ2; 0 < t2 < t3 < T2 < t1. There can only be a solution, if it exists,
when ε− < ω0. For ε− > ω0 the system never makes it to φ3 before T /2. The governing
equation is

φs +ω0t2 +∆φ23 + (ε++ω0)(T /2− t3)+ω0T /2 =φs +2π. (3.136)

To solve this, we note that

t3 = t2 +∆φ23/(−ε−+ω0). (3.137)

This yields:

t2 = T (ω0 +ε+/2)−2π−∆φ23(ε++ε−)/(ω0 −ε−)

ε+
. (3.138)

We further have

φs =φ2 −ω0t2. (3.139)

The condition t2 > 0 yields

T > 2π+∆φ23(ε++ε−)/(ω0 −ε−)

ω0 +ε+/2
(3.140)
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The condition t3 < T /2 yields

T < 2π+∆φ23ε−/(ω0 −ε−)

ω0
. (3.141)

The condition φ1 <φs =φ2 −ω0t2 yields

T < 2π+ε+∆φ12/ω0 +∆φ23(ε++ε−)/(ω0 −ε−)

ω0 +ε+/2
. (3.142)

The Arnold tongue of this scenario is embedded in those of scenarios 1 and 2. The
solution corresponding to this scenario is indeed unstable: the system either converges
to the solution of scenario 1 or 2. This can be easily proven by noting that the time it
takes to cross ∆φ23 is constant, as is the time to cross the night. The change in the phase
a period later is then the change in the phase at φ(T /2). This is given by δφ(T /2) =
∂φ(T /2)/∂t3δt1 = ∂φ(T /2)/∂t3δφs /ω0 = (ε++ω0)/ω0δφs , where we have noted thatδt1 =
−δφs /ω0 and ∂φ(T /2)/∂t3 = −(ε+ +ω0). Because (ε+ +ω0)/ω0 > 1, the change in the
phase after a full period is larger than the initial change in the phase: δφ(T ) = δφ(T /2) >
δφs . The solution is unstable.

Scenario 9: φ1 < φs < φ2; t2 < t3 < t1 < T2. There can only be a solution if ε− < ω0.
The equation to be solved is

φs +ω0t2 +2π−∆φ12 +ω0(T − t1) =φs +2π, (3.143)

which gives

T =∆φ12/ω0 + t1 − t2. (3.144)

We further have

t1 − t2 = 2π−∆φ13

ω0 +ε+
+ ∆φ23

ω0 −ε−
. (3.145)

Hence,

T = ∆φ12

ω0
+ 2π−∆φ13

ω0 +ε+
+ ∆φ23

ω0 −ε−
, (3.146)

which we could have written down right away upon somewhat more careful thinking. We
can obtain a bound on the parameters that allow a solution by noting that 0 < t1 − t2 <
T /2. Combining with Eq. 3.144 yields ∆φ12/ω0 < T < 2∆φ12/ω0. Combing this with
Eq. 3.146 yields

∆φ12

ω0
< 2π−∆φ13

ω0 +ε+
+ ∆φ23

ω0 −ε−
. (3.147)

A visual inspection illustrates this content very clearly. The parameter ε− should be
small, that is not close to unity. A large ε+ also helps.

Scenario 10: φ2 < φs < φ3; 0 < T2 < t3, t1, t2. Both for ε− < ω0 and ε− > ω0, the sce-
nario corresponds to that of scenario 3, but with ε− <ω0) in that scenario. There is only
a solution for

T = 2π/(ω0 −ε−/2). (3.148)
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Scenario 11: φ2 < φsφ3; 0 < t3 < T /2 < t1, t2. Only if ε− < ω0 may a solution exist: if
ε− >ω0, we are back to scenario 3 or 10. The governing equation is

φs + (−ε−+ω0)t3 + (ε++ω0)(T /2− t3)+
ω0T /2 =φs +2π. (3.149)

The solution is

t3 = T (ω0 +ε+/2)−2π

ε++ε−
(3.150)

φs =φ3 − (ω0 −ε−)t3. (3.151)

The condition t3 > 0 yields

T > 2π

ω0 +ε+/2
. (3.152)

The condition t3 < T /2 yields the inequality

T < 2π

ω0 −ε−/2
. (3.153)

The condition φs >φ2 yields

T < ∆φ23(ε++ε−)/(ω0 −ε−)+2π

ω0 +ε+/2
. (3.154)

The condition t1 > T /2 yields the inequality

T > 2π− (2π−∆φ13)(ε++ε−)/(ε++ω0)

ω0 −ε−/2
. (3.155)

The solution space overlaps with those of scenarios 1 - 3. Interestingly, we find again
that this solution is unstable: δφ(T ) = δφ(T /2) = ∂φ(T /2)/∂t3δt3 =−(ω0+ε+)δt3 =−(ω0+
ε+)∂t3/∂φsδφs = (ω0 +ε+)/(ω0 −ε−)δφs > δφs . We thus can see that when φ(t ) is convex
for 0 < t < T /2, the solution tends to be unstable.

Scenario 12: φ2 <φs <φ3; t3, t1 < T /2 < t2. Only if ε− <ω0 may a solution exist. The
governing equation is

φs + (−ε−+ω0)t3 + (2π−∆φ13)+ω0(T /2− t1)

+ω0T /2 =φs +2π. (3.156)

Exploiting that t1 = t3 + (2π−∆φ13)/(ε++ω0), the solution is

t3 = ω0T −∆φ13 −ω0(2π−∆φ13)/(ε++ω0)

ε−
(3.157)

φs =φ3 − (ω0 −ε−)t3. (3.158)

The condition t3 > 0 yields the inequality

T > ∆φ13

ω0
+ 2π−∆φ13

ε++ω0
. (3.159)
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The condition t1 < T /2 gives

T < ∆φ13 + (ω0 −ε−)(2π−∆φ13)/(ε++ω0)

ω0 −ε−/2
. (3.160)

The condition t2 = t1 +∆φ12/ω0 > T /2 yields

T > ∆φ13 + (ω0 −ε−)(2π−∆φ13)/(ε++ω0)−ε−∆φ12/ω0

ω0 −ε−/2
. (3.161)

The condition φs >φ2 yields the inequality

T < ∆φ13 +ω0(2π−∆φ13)/(ε++ω0)+ε−∆φ23/(ω0 −ε−)

ω0
. (3.162)

This curve is convex, that is the part of φ(t ) that really matters is convex: the initial
slope near t = 0, ω0 −ε−, is smaller than the slope near t = T /2, which is ω. This gives an
unstable solution.

Scenario 13: φ2 <φs <φ3; t3, t1, t2 < T /2. Again, a solution may only exist if ε− <ω0.
The central equation is

φs + (−ε−+ω0)t3 + (2π−∆φ23)+ (−ε−+ω0)(T /2− t2)

+ω0T /2 =φs +2π. (3.163)

The solution is

T = ∆φ23

ω0
+ (ω0 −ε−)(t2 − t3)

ω0
. (3.164)

The time difference is

t2 − t3 = ∆φ12

ω0
+ 2π−∆φ13

ω0 +ε+
, (3.165)

which gives for the period

T = ∆φ23

ω0
+ ω0 −ε−

ω0

(
∆φ12

ω0
+ 2π−∆φ13

ω0 +ε+

)
. (3.166)

3.7. HEAT MAPS MUTUAL INFORMATION AS A FUNCTION OF COU-
PLING STRENGTH AND INTRINSIC FREQUENCY

Fig. 3.3A shows the mutual information as a function of the coupling strength ε= ε+ = ε−
and intrinsic frequency ω0, for one value of the diffusion constant, D = 0.1/T . Fig. 3.9
shows the same plot, but then also for D = 1/T and D = 10−4/T . For D = 10−4/T , the
mutual information shows very rich behavior, corresponding to intrincate locking be-
havior.
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Figure 3.9: The mutual information as a function of the coupling strength ε and the intrinsic fre-
quencyω0, for three different values of the diffusion constant D . In all panels, ∆φ12 =∆φ23 =π/2.
Superimposed in black is the deterministic Arnold Tongue for scenarios 1 and 4. (A) D = 1/T . (B)
D = 0.1/T (the same panel as Fig. 3.3A). (C) D = 10−4/T . Note the rich behaviour of the mutual
information, corresponding to higher-order locking scenarios.

3.8. LINEAR-RESPONSE THEORY

As shown in the main text, the evolution of p1(φ, t ) is given by

∂t p1(φ, t )−D∂2
φp1(φ, t )−ω0∂φp1(φ, t ) =

L(t )p0(φ, t )∂φZ (φ). (3.167)

The solution to this non-homogeneous heat equation is:

p1(φ, t ) =
∫ 2π

0
dξG(φ−ω0t ,ξ, t ) f (ξ)

+
∫ 2π

0

∫ t

0
dτdξG(φ−ω0t ,ξ, t −τ)A(ξ,τ), (3.168)

where f (φ) is the initial condition, G(φ−ω0t ,φ0, t , t0) is the Green’s function of the un-
perturbed diffusion operator, and
A(φ, t ) ≡ L(t )p0(φ, t )∂φZ (φ) = L(t )/(2π)

(−δ(φ−φ1)−δ(φ−φ2)+2δ(φ−φ3)
)
.

The Green’s function is given by

G(φ−ω0t ,φ0, t ) =
∞∑

j=0
e− j 2Dt [A j (φ0)cos( j (φ−ω0t ))

+B j (φ0)sin( j (φ−ω0t ))], (3.169)

with

A j (φ0) = 1

π

∫
dφδ(φ−ω0t −φ0)cos( j (φ−ω0t )) = 1

π
cos jφ0 (3.170)

B j (φ0) = 1

π

∫
dφδ(φ−ω0t −φ0)sin( jφ′) = 1

π
sin jφ0 (3.171)

A0 = 1

2π
(3.172)

B0 = 0 (3.173)
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This yields:

G(φ,φ0, t ) = 1

2π
+ 1

π

∞∑
j=1

e−i 2Dt×[
cos( jφ0)cos( j (φ−ω0t ))+ sin( jφ0)sin( j (φ−ω0t ))

]
(3.174)

Substituting this expression into Eq. 3.167 and Eq. 3.168 gives

p1(φ, t ) =
∫ 2π

0
dξG(φ,ξ, t ) f (ξ)+

∫ 2π

0

∫ t

0
dτdξG(φ,ξ, t −τ)×

L(τ)

2π

[−δ(ξ−φ1)−δ(ξ−φ2)+2δ(ξ−φ3)
]

(3.175)

=G0(φ, t )+ 1

2π

∫ t

0
dτL(τ)∆G(φ, t −τ), (3.176)

where

G0(φ, t ) =
∫ 2π

0
dξG(φ,ξ, t ) f (ξ)

∆G(φ, t −τ) =−G(φ,φ1, t −τ)−G(φ,φ2, t −τ)

+2G(φ,φ3, t −τ). (3.177)

We can integrate the second term of Eq. 3.176 by parts. Calling the primitive of ∆G ,

C (φ,τ; t ) =
∫

dτ∆G(φ, t −τ), (3.178)

we find

p1(φ, t ) =G0(φ, t )+ [L(τ)C (φ,τ; t )]τ=t
τ=0 −

∫ t

0
dτ

dL(τ)

dτ
C (φ,τ; t ). (3.179)

Since L(τ) is a sequence of step functions,

dL(τ)

dτ
=

∞∑
n=0

δ(τ−nT )−δ(τ− (nT +T /2)), (3.180)

which yields

p1(φ, t ) =G0(φ, t )+ [L(τ)C (φ,τ; t )]t
0−

nT<t∑
n=0

[C (φ,nT ; t )−C (φ,nT +T /2; t )] (3.181)

Eq. 3.167 was derived assuming that the system is in steady state, and p(φ, t ) = p(φ, t+T ).
This means that we only have to consider times 0 < t < T , in which case only the first two
terms in the last sum on the right-hand side remain. More specifically, in steady state,
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the initial condition f (φ) equals the steady-state distribution, and f (φ) = p(φ, t = 0) =
p(φ, t = T ), meaning that the above expression reduces to

f (φ) =G0(φ,T )+Q(φ)

=
∫ 2π

0
f (ξ)G(φ,ξ, t = T )+Q(φ), (3.182)

where Q(φ) is defined as

Q(φ) ≡−2C (φ,τ= 0;T )+C (φ,τ= T ;T )+
C (φ,τ= T /2;T ). (3.183)

Eq. 3.182 an integral equation, more specifically an Fredholm equation of the second
type. The integration kernel G(φ,ξ,T ) has the form

G(φ,ξ,T ) = 1

2π
+ 1

π

∞∑
j=1

e− j 2DT [cos( j (φ−ω0T ))cos( jξ)

+sin( j (φ−ω0T ))sin( jξ)]. (3.184)

We define G∗(φ,ξ) =G(φ,ξ)−1/(2π), and rewrite Eq. 3.182 as:

f (φ) =
∫ 2π

0
dξ f (ξ)G∗(φ,ξ, t = T )+ 1

2π

∫ 2π

0
dξ f (ξ)+Q(φ) (3.185)

=
∫ 2π

0
dξ f (ξ)G∗(φ,ξ, t = T )+ 1

2π
+Q(φ) (3.186)

=
∫ 2π

0
dξ f (ξ)G∗(φ,ξ, t = T )+Q∗(φ), (3.187)

where in going from the first to the second line we have exploited that f (φ) is normalized,
and in the last line we have defined Q∗(φ) ≡ Q(φ) − 1/(2π). The kernel G∗(φ,ξ,T ) is
separable, and we can rewrite Eq. 3.182 as

f (φ) =
∞∑

j=1
e− j 2DT

∫ 2π

0
dξ f (ξ)[cos( j (φ−ω0T ))cos( jξ)

+sin( j (φ−ω0T ))sin( jξ)]+Q∗
j (φ) (3.188)

with Q∗(φ) =∑
j Q∗

j (φ).

To solve this integral equation, we define

c1 j ≡
∫ 2π

0
dξe− j 2DT f (ξ)cos( jξ) (3.189)

c2 j ≡
∫ 2π

0
dξe− j 2DT f (ξ)sin( jξ), (3.190)

so that

f (φ) =∑
j

[
cos( j (φ−ω0T ))c1 j + sin( j (φ−ω0T ))c2 j

+Q∗
j (φ)

]
. (3.191)
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We now multiply both sides, once with e− j 2DT cos( jφ) and once with e− j 2DT sin( jφ), and
integrate from 0 to 2π. On the left-hand side, this gives c1 j and c2 j , respectively. We then
arrive at the following set of linear equations:

c1 j =
∑
k

A j k c1k +B j k c2k +Q∗
1k , (3.192)

c2 j =
∑
k

C j k c1k +D j k c2k +Q∗
2k , (3.193)

(3.194)

where

A j k =
∫ 2π

0
dφe− j 2DT cos( jφ)cos(k(φ−ω0T )) (3.195)

B j k =
∫ 2π

0
dφe− j 2DT cos( jφ)sin(k(φ−ω0T )) (3.196)

C j k =
∫ 2π

0
dφe− j 2DT sin( jφ)cos(k(φ−ω0T )) (3.197)

D j k =
∫ 2π

0
dφe− j 2DT sin( jφ)sin(k(φ−ω0T )) (3.198)

Q∗
1k =

∫ 2π

0
dφe− j 2DT cos( jφ)Q∗

k (φ) (3.199)

Q∗
2k =

∫ 2π

0
dφe− j 2DT sin( jφ)Q∗

k (φ) (3.200)

We can define the vectors c1 and c2 with elements c1 j and c2 j , respectively, as well
as the matrices A, B, C, D, with elements A j k ,B j k ,C j k ,D j k , respectively, and the vectors
q1 and q2 with elements Q∗

1 j and Q∗
2 j , respectively. This allows us to define the vectors

cT ≡ (cT
1 : cT

2 ) and qT ≡ (qT
1 : qT

2 ), where T denotes the transpose, and the matrix

M =
(

A B
C D

)
. (3.201)

We can then rewrite Eqs. 4.88 and 3.193 as

c = Mc+q, (3.202)

which has as its solution

c = (I−M)−1 q, (3.203)

with I the identity matrix. With the coefficients c1 j and c2 j thus found, f (φ) can be ob-
tained from Eq. 3.191, yielding, finally, the steady-state solution pss(φ) = 1/(2π)+ f (φ).

3.9. MUTUAL INFORMATION AS A FUNCTION OF ε+ AND ε−
Fig. 3.10 addresses how the mutual information depends on ε+ and ε−. To this end, the
parameters are varied as ε+ = (1−α)ε and ε− =αε; varyingα thus keeps the total absolute
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coupling strength ε constant. The figure shows that the mutual information is rather
insensitive to the relative values of ε+ and ε−.
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Figure 3.10: Information transmission is not much affected by the relative magnitudes of ε+ and
ε− in the coupling function Z (φ) (see Fig. 3.1). We vary ε+ and ε− via a parameter α, defined as
ε+ = (1−α)ε and ε− =αε; varying α thus keeps the total absolute coupling strength constant. We
vary α and the diffusion constant D , and optimize over ε and ω0, keeping ∆φ12 = ∆φ23 = π/2
constant in all simulations. (A) The maximal mutual information I∗(φ, t ), obtained by optimizing
I (φ, t ) over ε and ω0, as a function of α, for different values of D . It is seen that for most values of
D , I∗(φ; t ) is quite independent of α. (B) The size of the Arnold Tongue of the stochastic system as

a function of α, for different values of D . The size is defined as
∫ ωmax

0

ωmin
0

dω0
∫ εmax

εmin dεI (φ; t )/I∗(φ; t ),

with ωmin
0 /ω= 0.4, ωmax

0 = 2.7, εmin/ω= 0, εmax/ω= 5. It is seen that, except for the low and high
values of α, the size of the Arnold Tongue of the stochastic system is fairly independent of α.





4
ROBUSTNESS OF CLOCKS TO INPUT

NOISE

ABSTRACT

To estimate the time, many organisms, ranging from cyanobacteria to animals, employ
a circadian clock which is based on a limit-cycle oscillator that can tick autonomously
with a nearly 24h period. Yet, a limit-cycle oscillator is not essential for knowing the time,
as exemplified by bacteria that possess an “hourglass”: a system that when forced by
an oscillatory light input exhibits robust oscillations from which the organism can infer
the time, but that in the absence of driving relaxes to a stable fixed point. Here, using
models of the Kai system of cyanobacteria, we compare a limit-cycle oscillator with two
hourglass models, one that without driving relaxes exponentially and one that does so
in an oscillatory fashion. In the limit of low input-noise, all three systems are equally
informative on time, yet in the regime of high input-noise the limit-cycle oscillator is far
superior. The same behavior is found in the Stuart-Landau model, indicating that our
result is universal.

4.1. INTRODUCTION

Many organisms, ranging from animals, plants, insects, to even bacteria, need to know
the time to synchronize their cellular and behavioral activity with the day-night rhythm.
To this end, many employ a circadian clock. Circadian clocks are biochemical systems
that can oscillate autonomously with a nearly 24h period, even though they are nor-
mally entrained by environmental signals to keep them in phase with the day-night cy-
cle. While it is clear that circadian clocks which are locked to their environment make
it possible to estimate the time of the day, it is far less obvious that clocks are essential
for knowing the time [1, 2]. The oscillatory light input could also be used to drive a sys-
tem which in the absence of any driving would relax to a stable fixed point rather than
exhibit a limit cycle. The driving would then generate oscillations from which the organ-
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ism could infer the time. It thus remains an open question what the benefits of circadian
clocks are in estimating the time of the day.

This question is highlighted by the timekeeping mechanisms of prokaryotes. While
circadian clocks are ubiquitous in eukaryotes, the only known prokaryotes to possess
circadian clocks are cyanobacteria, which exhibit photosynthesis. The most studied and
best characterized circadian clock is that of the cyanobacterium Synechococcus elonga-
tus, which consists of three proteins, KaiA, KaiB, and KaiC [3]. The central clock compo-
nent is KaiC, which forms a hexamer that is phosphorylated and dephosphorylated in a
cyclical fashion under the influence of KaiA and KaiB. In a landmark study, Kondo and
coworkers managed to reconstitute this protein phosphorylation cycle in the test tube,
demonstrating that this Kai system forms a bonafide circadian clock that can tick au-
tonomously in the absence of any oscillatory driving with a period of nearly 24 hours
[4]. However, S. elongatus is not the only cyanobacterial species. Another species is
Prochlorococcus, which possesses kaiB and kaiC, but lacks (functional) KaiA. Interest-
ingly, this species exhibits daily rhythms in gene expression under light-dark (LD) cy-
cles but no sustained circadian rhythms in constant conditions [5, 6]. Recently, Johnson
and coworkers made similar observations for the purple bacterium Rhodopseudomonas
palustris, which is unrelated to cyanobacteria but harbors homologs of KaiB and KaiC.
Its growth rate depends on the KaiC homolog in LD conditions but not constant con-
ditions [2], strongly suggesting that the bacterium uses the (homologous) Kai system to
keep time. Moreover, this species too does not exhibit sustained rhythms in constant
conditions, but does show daily rhythms in e.g. nitrogen fixation in cyclic conditions.
Proclorococcus and R. palustris thus appear to keep time via an “hourglass” mechanism
that relies on oscillatory driving [2, 5, 6]. These observations raise the question why
some bacterial species like S. elongatus have evolved a bonafide clock that can run freely,
while other species like Proclorococcus and R. palustris have evolved an hourglass time-
keeping system. The question under what conditions do circadian clocks evolve was
addressed by Troein et al. using computer simulations [7]. They used an evolutionary
algorithm to evolve in silico biochemical networks that exhibit oscillations. They found
that only in the presence of seasonal variations and stochastic fluctuations in the input
signal, systems evolved that can also oscillate autonomously. However, they did not sys-
tematically study how the performance of the different network designs depended on
these variations in the input signal. Moreover, as Johnson et al. pointed out [2], organ-
isms near the equator have evolved self-sustained oscillations, showing that seasonal
variations cannot be essential for the evolution of bonafide clocks.
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Figure 4.1: Overview of different timekeeping systems. (A) A push-pull network (PPN). Each pro-
tein can switch between a phosphorylated state and an unphosphorylated one, and the input sig-
nal enhances the rate of phosphorylation. In the absence of any driving, the PPN relaxes expo-
nentially to a steady state (middle panel). Yet, in the presence of an oscillatory input, the system
exhibits oscillations which can be used as an internal clock from which the time can be inferred.
(lower panel) (B) The uncoupled-hexamer model (UHM), inspired by the Kai system of Procloro-
chococcus. It consists of KaiC hexamers which can switch between an active state in which the
phosphorylation level tends to rise and an inactive one in which it tends to fall. The rate of phos-
phorylation is, presumably via changes in the ATP/ADP ratio, enhanced by the light input [8, 9].
The system is akin to a linear harmonic oscillator: it exhibits an intrinsic frequency ω0, resulting
from the protein phosphorylation cycle of the hexamers. However, the hexamers are not cou-
pled via KaiA as in the coupled-hexamer model shown in panel C, such that it cannot sustain au-
tonomous oscillations; in the absence of any driving, it relaxes in an oscillatory fashion to a stable
fixed point (middle panel). (C) The coupled-hexamer model (CHM), inspired by tke Kai system of
S. elongatus. Like the UHM, it consists of KaiC hexamers, which each tend to be phosphorylated
in a cyclic fashion. However, in contrast to the UHM, the hexamers are coupled and synchronized
via KaiA, such that the system can exhibit limit-cycle oscillations in the absence of any driving
(middle panel). In all models, time is estimated from the fraction p(t ) of phosphorylated proteins.

4.2. THE MODEL

Here, we hypothesize that the optimal design of the readout system that maximizes the
reliability by which cells can estimate the time depends on the noise in the input signal.
To test this idea, we study three different network designs from which the cell can infer
time (Fig. 4.1): 1) a simple push-pull network (PPN), in which a readout protein switches
between a phosphorylated and an unphosphorylated state (Fig. 4.1A). Because the phos-
phorylation rate increases with the light intensity, the phosphorylation level oscillates in
the presence of oscillatory driving, enabling the cell to estimate the time. This network
lacks an intrinsic oscillation frequency, and in the absence of any driving it relaxes to a
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stable fixed point in an exponential fashion; 2) an uncoupled hexamer model (UHM),
which is inspired by the Kai system of Plochorococcus (Fig. 4.1B). This model consists
of KaiC hexamers which each have an inherent propensity to proceed through a phos-
phorylation cycle. However, the phosphorylation cycles of the respective hexamers are
not coupled among each other, and without a common forcing the cycles will therefore
desynchronize, leading to the loss of macroscopic oscillations. In contrast to the pro-
teins of the PPN, each hexamer is a tiny oscillator with an intrinsic frequency ω0, which
means that an ensemble of hexamers that has been synchronized initially, will, in the
absence of driving, relax to its fixed point in an oscillatory manner. 3) coupled hexamer
model (CHM), which is inspired by the Kai system of S. elongatus (Fig. 4.1C). As in the
previous UHM, each hexamer has an intrinsic capacity to proceed through a phospho-
rylation cycle, but, in contrast to that system, the cycles of the respective hexamers are
coupled and synchronized via KaiA, as described further below. Consequently, this sys-
tem exhibits a limit cycle, yielding macroscopic oscillations with intrinsic frequency ω0

even in the absence of any driving.

Here we are interested in the question how the accuracy of estimating time is lim-
ited by the noise in the input signal, and how this limit depends on the architecture of
the readout network. We are therefore interested in the regime that the intrinsic noise
can be ignored [10], which means that we model the different systens using mean-field
(deterministic) chemical rate equations.

The chemical rate equation of the PPN model is given by ẋp = kfs(t )(xT − xp (t ))−
kbxp (t ), where xp (t ) is the concentration of phosphorylated protein, xT is the total con-
centration, kfs(t ) is the phosphorylation rate kf times the input signal s(t ), and kb is the
dephosphorylation rate. The uncoupled (UHM) and coupled (CHM) hexamer model are
based on a minimal model of the Kai system of S. elongatus, which in the past decade has
been modeled extensively due to a wealth of data [11–18]. In both models, KaiC switches
between an active conformation in which the phosphorylation level tends to rise and
an inactive one in which it tends to fall [11, 16]. Experiments indicate that the prin-
cipal Zeitgeber is the ATP/ADP ratio [8, 9], which means that the clock predominantly
couples to the input s(t ) during the phosphorylation phase of the oscillations [8, 18].
Inspired by this observation, in both the UHM and the CHM, s(t ) modulates the phos-
phorylation rate of active KaiC. Since, in S. elongatus, KaiB does not directly affect the
(de)phosphorylation rate but mainly plays a role in stabilizing inactive KaiC and mediat-
ing KaiA binding [11, 12, 16, 17], KaiB is not modeled explicitly. The principal difference
between the UHM and CHM is KaiA: (functional) KaiA is absent in Prochlorococcus and
hence in the UHM [5, 6]. In contrast, in S. elongatus and hence the CHM, KaiA phos-
phorylates active KaiC, yet inactive KaiC can via KaiB strongly bind KaiA too. This gives
rise to the synchronisation mechanism of differential affinity [11, 12], in which inactive
hexamers that are still in the dephosphorylation phase of the cycle take away KaiA from
those hexamers that have already finished their cycle, thereby halting their next round
of phosphorylation. In all three models, the input is modeled as a sinusoidal signal with
mean s̄ and driving frequencyω= 2π/T plus additive noiseηs (t ): s(t ) = sin(ωt )+s̄+ηs (t ).
The noise is uncorrelated with the mean signal, and has strengthσ2

s and correlation time
τc , 〈ηs (t )ηs (t ′)〉 = σ2

s e−|t−t ′|/τc . A detailed description of the different models is given in
[20].
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Figure 4.2: The mutual information I (p; t ) as a function of the input-noise strength σ2
s , for the

push-pull network (PPN), the uncoupled-hexamer model (UHM) and the coupled-hexamer model
(CHM), see Fig. 4.1. In the limit of low input noise, all systems are equally informative on time,
yet in the high-noise regime the CHM is most accurate. The parameters have been optimized to
maximize I (p; t ); since these are (nearly) independent of σ2

s , they are fixed (see Table S1 [20]).

4.3. RESULTS

As a performance measure for the accuracy of estimating time, we use the mutual infor-
mation I (p; t ) between the time t and the phosphorylation level p(t ) [10, 19]:

I (p; t ) =
∫ T

0
d t

∫ 1

0
d pP (p, t ) log2

P (p, t )

P (p)P (t )
. (4.1)

Here P (p, t ) is the joint probability distribution while P (p) and P (t ) = 1/T are the marginal
distributions for observing p and t . The mutual information quantifies the number of
distinct time points that can be inferred uniquely from the phosphorylation level p(t ).
The distributions are obtained from running long simulations of the chemical rate equa-
tions of the different models [20].

For each system, we first optimized the parameters to maximize the mutual informa-
tion [20]. For the PPN, there exists an optimal response time τr ∼ 1/kb that maximizes
I (p; t ), which can be understood as a trade-off between maximizing the amplitude of
p(t ), which increases with decreasing τr , and minimizing the noise in p(t ), which de-
creases with increasing τr because of time averaging [20, 21]. Similarly, for the UHM,
there exists an optimal intrinsic frequency ω0 of the individual hexamers. Because the
UHM is linear, its behavior is similar to the simplest system with an intrinsic frequency,
the (damped) harmonic oscillator. Analyzing this system shows that while the amplitude
A of the output x(t ) is maximized at resonance,ω0 →ω, the standard deviationσx of x is
maximized when ω0 → 0, such that the signal-to-noise ratio A/σx peaks for ω0 >ω [20].
Interestingly, also the CHM exhibits a maximum in A/σx for intrinsic frequencies that
are slightly off-resonance [20].

Fig. 4.2 shows the mutual information I (p; t ) as a function of the input-noise strength
σ2

s for the three systems. In the limit that σ2
s is small, I (p; t ) is essentially the same for all

systems. In this regime, they are equally informative on time. However, the figure also



4

86 4. ROBUSTNESS OF CLOCKS TO INPUT NOISE

shows that as σ2
s rises, I (p; t ) of the UHM and especially the PPN decrease very rapidly,

while that of the CHM falls much more slowly. In fact, forσ2
s ≈ 3, I (p; t ) of the CHM is still

far above 2 bits, while I (p; t ) of the PPN and that of the UHM have already dropped below
1 bit, meaning that using these systems, the cell would no longer be able to distinguish
between day and night. Indeed, this figure shows that in the regime of high input noise,
a bonafide clock that can tick autonomously is a much better time-keeper than a system
which relies on oscillatory driving for showing oscillations. This is the principal result of
our paper. It is observed for other values of τc and other types of input signals, such as a
truncated sinusoid corresponding to no driving at night (see Fig. S4 of [20]).

= 0.01 = 0.1 = 1 = 5= 0.001

Figure 4.3: The mutual information I (p; t ) as a function of α of the Stuart-Landau model (see
Eq. 4.2), for different strengths of the input noise σ2

s . When α < 0, the system corresponds to a
damped oscillator like the uncoupled-hexamer model (UHM). When α > 0, the system can sus-
tain autonomous oscillations, like the coupled-hexamer model (CHM). Clearly, the mutual infor-
mation rises as the system is changed from a damped oscillator into a bonafide clock that exhibits
limit-cycle oscillations. Moreover, the increase is most pronounced when the input noise is large,
as also observed for the UHM and the CHM (see Fig. 4.2). Parameters: ν= 0; β=ω; ε= 0.5ω.

The robustness of our observation that bonafide clocks are more reliable timekeep-
ers especially when the input noise is large, suggests that it is a universal phenomenon,
independent of the details of the system. We therefore analyzed a generic minimal model,
the Stuart-Landau model. It allows us to study how the capacity to infer time changes
as a system is altered from a damped (nearly) linear oscillator, which has a character-
istic frequency but cannot sustain oscillations in the absence of driving, to a (weakly)
non-linear oscillator that can sustain autonomous oscillations [20]. Near the Hopf bi-
furcation where a limit cycle appears the effect of the non-linearity is weak, so that the
solution x(t ) is close to that of a linear harmonic oscillator; this means that when the
system is driven by a sinusoidal signal s(t ) with frequency ω(t ), the solution has the
form x(t ) = 1/2(A(t )e iωt + c.c.), where A(t ) is a complex amplitude that can be time-
dependent [22]. The dynamics of A(t ) is then given by

Ȧ =−iνA+αA−β|A|2 A−εE , (4.2)

where ν ≡ (ω2 −ω2
0)/(2ω) with ω0 the intrinsic frequency, α and β are parameters that

govern the linear and non-linear growth and decay of oscillations, E is the first harmonic
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of s(t ) and ε describes the coupling strength [22]. Eq. 4.2 gives a universal description of
a driven weakly non-linear oscillator near the Hopf bifurcation [22].

The non-driven system exhibits a Hopf bifurcation atα= 0. This means that by vary-
ingαwe can change the system from a damped oscillator (defined byα< 0) which in the
absence of driving exhibits oscillations that decay, to an limit-cycle oscillator (α> 0) that
shows free-running oscillations. The driven damped oscillator system (α< 0) always has
one stable fixed point with |A| > 0 corresponding to sinusoidal oscillations that are syn-
chronized with the driving. The driven limit-cycle oscillator system (α > 0), however,
can exhibit different dynamics, ranging from perfect synchronization, where x(t ) has a
constant amplitude A and constant phase shift with respect to s(t ), to quasi-periodic os-
cillations of x(t ), arising from limit-cycle dynamics of A(t ) [22]. Here we limit ourselves
to perfect synchronisation.

To compute I (x, t ), we use an approach that is inspired by the linear-noise approx-
imation for computing noise in biochemical networks, and which we have employed
before in this context [10, 19]. It assumes that P (x|t ) is a Gaussian distribution with vari-
ance σ2

x (t ) centered at the deterministic solution x(t ) = 1/2(Ae iωt + c.c.), where A is ob-
tained by solving Eq. 4.2 in steady state. To find σ2

x , we first compute σ2
A from Eq. 4.2 by

adding Gaussian white-noise of strengthσ2
s to E and expanding A to linear order around

its fixed point; σ2
x (t ) is then obtained from σ2

A via a coordinate transformation [20].
Fig. 4.3 shows the mutual information I (x; t ) as a function α, for different values of

σ2
s . The figure shows that I (x; t ) rises as the system is changed from a damped oscillator

α < 0 to a self-sustained oscillator (α > 0). Moreover, the increase is most pronounced
when the input noiseσ2

s is large. The Stuart-Landau model thus reproduces the behavior
of the computational models in Fig. 4.2. It shows that the principal result of our study
is universal: when the input noise is small, a system that shows sustained oscillations
only in response to driving can keep time as reliably as a limit-cycle oscillator, which can
generate oscillations autonomously; yet for high input noise, a limit-cycle oscillator is
superior.

The PPN and UHM are readout systems that in the absence of driving relax to a sta-
ble fixed point. The signal generates oscillations by driving the fixed point around in
state space, and noise in the input then moves the fixed point around in a stochastic
fashion. While the driven system exhibits a cycle in state space, the trajectory is deter-
mined by the strength of the input, creating a trade-off between gain (amplitude) and
noise that cannot be lifted [20]. The CHM is a limit-cycle oscillator, which is markedly
different. In the absence of driving, it already moves around a cycle in state space with
a well-defined amplitude and pace: the limit cycle. This cycle is an intrinsic and robust
property of the system. While coupling the system to the input is necessary for main-
taining a stable phase relationship with the environment, weak forcing does not signif-
icantly change the trajectory of the limit cycle, making these oscillators more robust to
input noise [20]. Lastly, we note that in our minimal models the formal distinction be-
tween internal and input noise vanishes—the same additive noise term could be used to
model either source. This leaves open the possibility that limit-cycle oscillators are also
more robust to internal noise. We leave this question for future work.
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SUPPLEMENT FOR “ROBUSTNESS OF CLOCKS TO INPUT NOISE”

This supporting information provides background information on the computational
models and analytical models that we have studied. The computational models are de-
scribed in the next section, while the analytical models are discussed in section 4.5.

4.4. COMPUTATIONAL MODELS

In this section, we describe the three computational models that we have considered
in this study: the push-pull network; the uncoupled-hexamer model; and the coupled-
hexamer model. We also describe how we have modeled the input signal and how the
systems are coupled to the input. Finally, we investigate the robustness of the princi-
pal results shown in Fig. 2 of the main text. In the next section, we first describe how
we have modeled the input signal. In the subsequent sections, we then describe the
computational models, how they are coupled to the input, and how we have set their
parameters. Table 4.1 lists the values of all the parameters of all the models. In section
4.4.5 we show that the principal findings of Fig. 2 are robust to the type of input signal
and the noise correlation time.

4.4.1. INPUT SIGNAL

The input signal is modeled as a sinusoidal oscillation with additive noise:

s(t ) = sin(ωt )+ s̄ +ηs (t ), (4.3)

where s̄ is the mean input signal and ηs (t ) describes the input noise. The noise in the
input is assumed to be uncorrelated with the mean input signal s(t ). Moreover, we as-
sume that the input noise has strength σ2

s and is colored, relaxing exponentially with
correlation time τc : 〈ηs (t )ηs (t ′)〉 =σ2

s e−|t−t ′|/τc .
The input signal s(t ) is coupled to the system by modulating the phosphorylation

rate kα of the core clock protein, as we describe in detail for the respective computa-
tional models in the next sections. Here, kα = kf,kps,ki , depending on the computational
model. As we will see, the net phosphorylation rate is given by

kαs(t ) = kαs(t ) (4.4)

= kα s̄ +kα
(
sin(ωt )+ηs

)
. (4.5)

This expression shows that in the presence of oscillatory driving, the mean phosphory-
lation rate averaged over a period is set by kα s̄, while the amplitude of the oscillation
in the phosphorylation rate, which sets the strength of the forcing, is given by kα. We
also note that kα amplifies not only the “true” signal sin(ωt ), but also the noise ηs , the
consequences of which will be discussed below. Lastly, the absence of any oscillatory
driving is modeled by taking s(t ) = s̄, such that the net phosphorylation rate is then
kα s̄. The phosphorylation rate in the presence of stochastic driving is thus character-
ized by the following parameters: the mean phosphorylation rate kα s̄, the amplitude of
the phosphorylation-rate oscillations kα, and the noise ηs (t ), characterized by the noise
strength σ2

s and correlation time τc . We will vary σ2
s and τc systematically, while s̄ and
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kα, together with the other system parameters, will be optimized to maximize the mu-
tual information, as described below.

In the simulations, realisations of ηs (t ) are generated via the Ornstein-Uhlenbeck
process

η̇s =−ηs /τc +ξ(t ), (4.6)

where ξ(t ) is Gaussian white noise 〈ξ(t )ξ(t ′)〉 = 〈ξ2〉δ(t−t ′). This generates colored noise
of ηs (t ), 〈ηs (t )ηs (t ′)〉 =σ2

s e−|t−t ′|/τc , where σ2
s = 〈ξ2〉τc /2.

The results of Fig. 2 of the main text correspond to τc = 0.5/h. However, we have
tested the robustness of the results by varying the noise correlation time τc . In addition,
to test the robustness of our observations to changes in the shape of the input signal, we
have also varied that. These tests are described in section 4.4.5 and the results are shown
in Fig. 4.7. Clearly, the principal result of Fig. 2 of the main text is robust to changes in
both the noise correlation time τc and the shape of the mean-input signal.

= 1 1

 0.005

1

 =0.01
= 0.01
= 0.3

Figure 4.4: The push-pull network. (A) Time trace of p(t ) in the presence of driving (green line)
and absence of driving (blue line). Please note that in the absence of driving, the system relaxes in
an exponentially fashion to a stable fixed point. (B) The mutual information I (p; t ) as a function
of kb for different values of kf (see Eq. 4.7), for σ2

s = 1. It is seen that for each phosphorylation rate
kf there is an optimal dephosphorylation rate kb that maximizes the mutual information I (p; t ).
Moreover, I (p; t ) increases as kf decreases, but then saturates and hence becomes independent
of kf as the system enters the regime in which it responds linearly to the input s. The dashed

line shows the optimal value of k
opt
b ≈ 0.3/h, as predicted by Eq. 4.43. (C) The mutual informa-

tion I (p; t ) as a function of the dephosphorylation rate kb, for different values of the input-noise
strength σ2

s , keeping the phosphorylation rate fixed at kf = 0.01/h. The optimal dephosphoryla-

tion rate k
opt
b ≈ 0.3/h (dashed line) is independent ofσ2

s , as predicted by Eq. 4.43. The input-noise
correlation time τc = 0.5h.
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Parameter Description Value

Push-pull network, Eq. 4.7
kf Phosphorylation rate 0.01/h
kb Dephosphorylation rate (Eq. 4.43) 0.3/h
Uncoupled-hexamer model, Eqs. 4.8-4.13
kf Phosphorylation rate 0.26/h
kb Dephosphorylation rate 0.52/h
ks Conformational switching rate 100/h
Coupled-hexamer model, Eqs. 4.16-4.22
kps Autophosphorylation rate 0.0125/h
kb Dephosphorylation rate 0.1875/h
ks Conformational switching rate 100/h
K0 KaiA dissociation constant C0 0.0001
K1 KaiA dissociation constant C1 0.0003
K2 KaiA dissociation constant C2 0.001
K3 KaiA aissociation constant C3 0.003
K4 KaiA dissociation constant C4 0.01
K5 KaiA dissociation constant C5 0.03
k0 KaiA-stimulated phosphorylation rate C0 0.5/h
k1 KaiA-stimulated phosphorylation rate C1 0.5/h
k2 KaiA-stimulated phosphorylation rate C2 0.5/h
k3 KaiA-stimulated phosphorylation rate C3 0.5/h
k4 KaiA-stimulated phosphorylation rate C4 0.5/h
k5 KaiA-stimulated phosphorylation rate C5 0.5/h
b̃2−4 Number KaiA dimers sequestered by C̃1−4 2
b̃0,5,6 Number KaiA dimers sequestered by C̃0,5,6 0
K̃1−4 KaiA dissociation constant C̃1−4 0.000001
K̃0,5,6 KaiA dissociation constant C̃0,5,6 ∞
cT Total concentration of KaiC 1
AT Total concentration of KaiA 1

Table 4.1: Parameter values of all the three computational models studied in the main text. The
parameter values listed are those that maximize the mutual information I (p; t ) between the phos-
phorylation level p and time t ; these values are nearly independent of the input-noise strength
σ2

s , and thus kept constant as σ2
s is varied in the simulations corresponding to Fig. 2 of the main

text. For these optimal parameters values, the intrinsic period of the uncoupled-hexamer model
is T

opt
0 ≈ 23.1h while that of the coupled-hexamer model is T

opt
0 ≈ 25.1h. All three models are

coupled to the input by multiplying the phosphorylation rates with s(t ) = sin(ω)+ s̄ +ηs (t ), where
s̄ = 2 and ηs (t ) describes colored noise with strength σ2

s and correlation time τc , 〈ηs (t )ηs (t ′)〉 =
σ2

s e−|t−t ′|/τc . For Fig. 2 of the main text, τc = 0.5h. Dissociation constants and protein concen-
trations are in units of the total KaiC concentration. Note that in the absence of oscillatory driving
s(t ) = s̄ = 2, meaning that in simulations of the non-driven systems the phosphorylation rates kf,
ki , kps, still have to be multiplied by s̄ = 2.
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4.4.2. PUSH-PULL NETWORK

The push-pull network is described by the following reaction

ẋp = kfs(t )(xT −xp (t ))−kbxp (t ), (4.7)

where xT = x + xp is the total protein concentration, xp is the concentration of phos-
phorylated protein, kfs(t ) is the phosphorylation rate kf times the input signal s(t ) (see
Eq. 4.3) and kb is the dephosphorylation rate. Fig. 4.4A shows a time trace of both a
driven and a non-driven push-pull network.
Setting the parameters
The steady-state mean phosphorylation level is set by p̄ = x̄p /xT = kf s̄/(kf s̄ + kb). We
anticipated, based on the analytical calculations described in section 4.5.1, that a key
timescale is kb and that the system should operate in the regime in which it responds
linearly to changes in the mean input s̄. This means that for a given kb, kf and s̄ cannot
be too large. We have chosen s̄ = 2, and then varied kf and kb to optimize the mutual
information. We then verified a posteriori that the value of s̄ = 2 indeed puts the system
in the optimal linear regime.

Optimal dephosphorylation rate Specifically, the parameters kf and kb are set as
follows: for a given input noise strength σ2

s = 1.0, we first fix the phosphorylation rate
kf and compute the mutual information I (p; t ) between the phosphorylated fraction
p(t ) = xp (t )/xT and time t as a function of the dephosphorylation rate kb ; we then re-
peat this procedure by varying kf. The result is shown in Fig. 4.4B. Clearly, there exists an
optimal value of kb that maximizes I (p; t ). Moreover, the optimal value kopt

b becomes in-
depdendent of kf when kf becomes so small that the system enters the regime in which
it responds linearly to changes in the mean input s̄. We then fixed the phosphoryla-
tion rate to kf = 0.01/h, and compute I (p; t ) as a function of kb for different levels of the
input-noise strength, see Fig. 4.4C. It is seen that the optimal dephosphorylation rate
kopt

b is essentially independent of the input noise strength σ2
s . In the simulations corre-

sponding to Fig. 2 of the main text, we therefore kept kb constant at kopt
b = 0.3/h and kf

constant at kf = 0.01/h when we varied σ2
s .

The observation that kopt
b is independent of kf and σ2

s can be understood by not-
ing that to maximize information transmission, the system should operate in the linear-
response regime in which the mean output x̄ responds linearly to changes in the mean
input s̄. This regime tends to enhance information because it ensures that in the pres-
ence of a sinusoidal input, the output xp (t ) will not be distorted and be sinusoidal too. In
this linear-response regime, the system can be analyzed analytically, see Eq. 4.43 in sec-
tion 4.5.1 below. This equation, which accurately predicts the optimum seen in Fig. 4.4B
and Fig. 4.4C, reveals that the optimal dephosphorylation rate depends on the frequency
of the driving signal, ω, and the correlation time of the noise, τc , but not on the noise
strengthσ2

s and the coupling ρ to the input signal, given by ρ = kfxT . Increasing the gain
ρ amplifies not only the true signal, but also the noise in that signal (see also Eq. 4.5),
such that the signal-to-noise ratio is unaltered. Indeed, increasing the gain only helps in
the presence of internal noise, which here, however, is zero. Conversely, if intrinsic noise
were present, simply decreasing kf to bring the system in the optimal linear-response
regime would lower the signal-to-noise ratio; however, the signal-to-noise ratio can al-
ways be enhanced by increasing xT: this will not only increase the gain ρ = kfxT and
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thereby raise the output signal above the intrinsic noise, but also reduce the intrinsic
noise itself.

We note that for (much) larger input-noise strength than that considered here, it
might be beneficial to strongly increase the input signal and drive the system into the
non-linear regime. This makes it possible to exploit the fact that the output p(t ) is nat-
urally bounded between zero and unity; the input noise can thus be tamed by continu-
ally pushing p(t ) against either zero and unity. This generates, however, strongly non-
sinusoidal, square-wave like oscillations, which are not experimentally observed [12].
We thus leave the regime of strong driving for future work.

4.4.3. UNCOUPLED-HEXAMER MODEL: KAI SYSTEM OF Prochlorococcus

Background The uncoupled-hexamer model (UHM) presented in the main text is a min-
imal model of the Kai system of the cyanobacterium Proclorococcus and, possibly, the
purple bacterium Rhodopseudomonas palustris. The well characterized clock of the cyanobac-
terium S. elongatus consists of three proteins, KaiA, KaiB and KaiC, which are all essential
for sustaining free-running oscillations [3]. And, indeed, many cyanobacteria possess at
least one copy of each kai gene. One exception is Proclororoccus, which contains kaiB
and kaiC, but misses a (functional) kaiA gene. Interestingly, in daily (12h:12h) light-dark
(LD) cycles, the expression of many genes, including kaiB and kaiC, is rhythmic, but
in constant conditions these rhythms damp very rapidly [5, 6]. Similar behavior is ob-
served for the purple bacterium R. palustris, which possesses homologs of the kaiB and
kaiC genes [2]: under LD conditions, the KaiC homolog appears to be phosphorylated in
a circadian fashion, but under constant conditions, the oscillations decay very rapidly;
physiological activities, such as the nitrogen fixation rates, follow a similar pattern [2].
Of particular interest is the observation that under LD conditions but not under LL con-
ditions, the growth rate is significantly reduced in the strain in which the kaiC homolog
was knocked out [2]. This strongly suggests that the (homologous) Kai system plays a
role as a timekeeping mechanism, which relies, however, on oscillatory driving.
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Figure 4.5: The uncoupled-hexamer model. (A) Time trace of p(t ) in the presence of driving (green
line) and absence of driving (blue line). Please note that in the absence of driving, the system
relaxes in an oscillatory fashion to a stable fixed point. (B) Heatmap of the mutual information
I (p; t ) as a function of the scaling factor q that scales both the dephosphorylation rate kb and the
the mean phosphorylation rate kf s̄ (see Eq. 4.5) and the ratio r = kb/(kf s̄) of these quantities. The
mean phosphorylation rate kf s̄ is changed by varying s̄ while keeping kf = 0.26/h constant; this
ensures that the strength of the forcing, i.e. the amplitude of the phosphorylation-rate oscillations
set by kf, remains constant (see Eq. 4.5). Superimposed are contour lines of constantω0 =ω0(q,r )
(see Eq. 4.15). It is seen that in the regime where I (p; t ) is high, I (p, t ) is almost constant along these
contour lines, showing that I (p; t ) predominantly depends on s̄ and kb via ω0. (C) The mutual
information I (p; t ) as a function ofω0, which was varied by scaling s̄ and kb keeping r = kb/(kf s̄) =
1 and kf = 0.26/h, for different values of the input-noise strength σ2

s . It is seen that there exists an

optimal intrinsic frequency ω
opt
0 that maximizes I (p; t ). Moreover, ω

opt
0 is nearly independent of

σ2
s , corresponding to an intrinsic period T0 = 2π/ω

opt
0 ≈ 23.1h. (D) The mutual information I (p; t )

as a function of kf and s̄, keeping kb = 0.52/h constant. Superimposed is the line along which
kf s̄ = 0.52/h and hence the intrinsic period T0 are constant (see Eq. 4.15). Along this line also
I (p; t ) is nearly constant, meaning that the strength of the forcing, set by kf, is not very critical.
This mirrors the behavior seen for the push-pull network (see Fig. 4.4). It is due to the fact that
increasing the forcing raises not only the amplitude but also the noise, keeping the signal-to-noise
ratio and hence the mutual information essentially unchanged. The noise correlation time τc =
0.5h.

Model Our model is inspired by the models that in recent years have been developed
for S. elongatus [11, 12, 15–17]. These models share a number of characteristics that are
essential for generating oscillations and entrainment (see also next section). The central
clock component is KaiC, a hexamer, that can switch between an active state in which
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the phosphorylation level tends to rise and an inactive one in which it tends to fall. The
model lacks KaiA because Proclororoccus and R. palustris miss a functional kaiA gene
[2, 5, 6]. In S. elongatus, KaiB does not directly affect the rates of phosphorylation and
dephosphorylation, but mainly serves to stabilize the inactive state and mediate KaiA
binding by inactive KaiC [16, 17]. KaiB is therefore not modelled explicitly [16, 17]. The
main entrainment signal for S. elongatus is the ratio of ATP to ADP levels, which depends
on the light intensity, and predominantly couples to KaiC in its active conformation [8,
9, 17, 18]. These observations give rise to the following chemical rate equations:

ċ0 = ksc̃0 −kfs(t )c0 (4.8)

ċi = kfs(t )(ci−1 − ci ) i ∈ (1, . . . ,5) (4.9)

ċ6 = kfs(t )c5 −ksc6 (4.10)
˙̃c6 = ksc6 −kfc̃6 (4.11)
˙̃ci = kb(c̃i+1 − c̃i ) i ∈ (1, . . . ,5) (4.12)
˙̃c0 = kbc̃1 −ksc̃0 (4.13)

Here, ci , with i = 0, . . . ,6, is the concentration of active i -fold phosphorylated KaiC in
its active conformation, while c̃i is the concentration of inactive i -fold phosphorylated
KaiC. The quantity ks is the conformational switching rate, kb is the dephosphorylation
rate of inactive KaiC, and kfs(t ) is the phosphorylation rate of active KaiC, kf, times the
input signal s(t ).

The output is the phosphorylation fraction of KaiC proteins (monomers), given by
[11, 15, 17]

p(t ) = 1

6

∑6
i=0 i (ci + c̃i )∑6
i=0(ci + c̃i )

. (4.14)

Fig. 4.5A shows a time trace of the phosphorylation level p(t ) of both a driven and a
non-driven uncoupled-hexamer model.

Intrinsic frequency Because the cycles of the different hexamers are not coupled
via KaiA as in the coupled-hexamer model and in S. elnogatus, the system cannot sus-
tain free-running oscillations. In this respect, the system is similar to the push-pull net-
work in the sense that a perturbation of the non-driven system will relax to a stable fixed
point. However, this model differs from the push-pull network in that it has a charac-
teristic frequency ω0 = 2π/T0 with intrinsic period T0, arising from the phosphorylation
cycle of the KaiC hexamers. Consequently, while a perturbed (non-driven) push-pull
network will relax exponentially to its stable fixed point, the uncoupled-hexamer model
will, when not driven, relax in an oscillatory fashion to its stable fixed point with an in-
trinsic frequency ω0 (see Fig. 4.5A). To predict the latter, we note that the dynamics of
Eqs. 4.8-4.13 can be written in the form ẋ = Ax, and when all rate constants are equal,
kf s̄ = kb = ks, the eigenvalues and eigenvectors of A can be computed analytically. The
eigenvectors are complex exponentials. For a cycle with N sites with hopping rate k, the
frequency associated with the lowest-lying eigenvalue is k sin(2π/N ), which to leading
order is 2πk/N , corresponding to a period T0 = N /k. Please note that this is also the pe-
riod of a single multimer with N (cyclic) sites with N equal rates of hopping from one site
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to the next. We therefore expect that, to a good approximation, the intrinsic frequency
ω0 = 2π/T0 of an ensemble of hexamers corresponds to the intrinsic period of a single
hexamer:

T0 ' 2

ks
+ 6

kf s̄
+ 6

kb
' 6

kf s̄
+ 6

kb
, (4.15)

where we recall that in the non-driven system the phosphorylation rate is kf s̄. We verfied
that this approximation is very accurate by fitting the relaxation of p(t ) of the UHM to a
function of the form e−γt sin(ω0t ), with ω0 = 2π/T0. The intrinsic period T0 obtained in
this way is to an excellent approximation given by Eq. 4.15.
Setting the parameters
The parameters were set as follows: the conformational switching rate ks was set to be
larger than the (de)phosphorylation rates ks À {kf,kb}, as in the original models [11, 15,
17]. This leaves for a given input noise ηs , three parameters to be optimized: the phos-
phorylation rate kf, the dephosphorylation rate kb, and the mean input signal s̄. The
product kf s̄ determines the mean phosphorylation rate, while kf separately determines
the strength of the forcing, i.e. the amplitude of the oscillations in the phosphoryation
rate (see Eq. 4.5). The quantities kf s̄ and kb together determine the intrinsic frequency
ω0 = 2π/T0 (see Eq. 4.15) and the symmetry of the phosphorylation cycle, set by the ratio
r ≡ kb/(kf s̄).

Optimal intrinsic frequency We therefore first computed for different input-noise
strengths σ2

s , the mutual information I (p; t ) as a function of the ratio r = kb/(kf s̄) and a
scaling factor q that scales both s̄ and kb, keeping the strength of the forcing constant
at kf = 0.26/h. Fig. 4.5B shows the heatmap of I (p; t ) = I (r, q) for σ2

s = 1, but qualita-
tively similar results were obtained for other values of σ2

s (as discussed below). Since the
intrinsic frequency ω0 depends on both r and q (see Eq. 4.15), we have superimposed
contourlines of constant ω0. Interestingly, the figure shows that in the relevant regime
of high mutual information, I (p; t ) follows the contourlines of constant ω0. This shows
that I (p; t ) depends on r and q predominantly through ω0(r, q), I (p; t ) ≈ I (ω0(r, q)). It
demonstrates that the mutual information is primarly determined by the intrinsic period
T0—the time to complete a single cycle—and not by the evenness of the pace around the
cycle set by r .

To reveal the dependence of I (ω0) on σ2
s , we show in panel C for different values of

σ2
s , I (p; t ) as a function of ω0, which was varied by scaling s̄ and kb via the scaling factor

q , keeping the ratio of kf s̄ and kb constant at r = 1. Clearly, there is an optimal frequency
ω

opt
0 ≈ 1.04ω corresponding to an optimal k = kf s̄ = kb = 0.52/h, that maximizes the

mutual information which is essentially independent of σ2
s . In Fig. 2 of the main text,

when we vary σ2
s , we thus kept k = kf s̄ = kb = 0.52/h constant, with kf = 0.26/h and s̄ = 2.

Interestingly, the optimal intrinsic frequency ω
opt
0 is not equal to the driving fre-

quency ω: ωopt
0 >ω, yielding an intrinsic period T opt

0 ≈ 23.1h that is smaller than 24 hrs.
This can be understood by analyzing the simplest model that mimics the uncoupled-
hexamer model: the (damped) harmonic oscillator, which, like the uncoupled-hexamer
model, is a linear system with a characteristic frequency. As described in 4.5.2, we expect
generically for such a system that the optimal intrinsic frequency is larger than the driv-
ing frequency: ωopt

0 > ω. This is because while the amplitude A of the output (the “sig-
nal”) is maximal at resonance, ω0 =ω (see Eq. 4.54), input-noise averaging is maximized
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(i.e. output noise σx minimized) for large ω0 (see Eq. 4.59), such that the signal-to-noise
ratio A/σx is maximal for ωopt

0 >ω.

Mutual information is less sensitive to coupling strength Lastly, while kf s̄ and kb are
vital by setting the intrinsic period T0 (Eq. 4.15) that maximizes the mutual information
(panels B and C of Fig. 4.5), we now address the importance of the coupling strength,
which is set by kf separately (see Eq. 4.5). To this end, we computed the mutual infor-
mation I (p; t ) as a function of kf and s̄, keeping the dephosphorylation rate constant at
kb = 0.52/h. Fig. 4.5D shows the result. It is seen that there is, as in panel B, a band along
which the mutual information is highest. This band coincides with the superimposed
dashed white line along which kf s̄ = 0.52/h and hence T0 are constant (see Eq. 4.15). This
shows that the mutual information I (p; t ) is predominantly determined by the intrinsic
period T0: as the parameters are changed in a direction perpendiular to this line (and
T0 changes most strongly), then I (p; t ) falls dramatically. In contrast, along the dashed
white line of constant T0, I (p; t ) is nearly constant. It shows that the precise strength of
the forcing, set by kf, is not critical for the mutual information. This behavior mirrors
that observed for the push-pull network. While increasing kf increases the amplitude
of the oscillations in p(t ), it also increases the noise, such that the signal-to-noise ra-
tio and hence the mutual information are essentially unchanged. The same behavior
is observed for the minimal model of this system, the harmonic oscillator, described in
4.5.2.

To sum up, in the simulations corresponding to Fig. 2 of the main text, we kept kb =
kf s̄ = 0.52/h, with s̄ = 2 and kf = 0.26/h.

4.4.4. COUPLED-HEXAMER MODEL: KAI SYSTEM OF S. elongatus

Backgroud In contrast to the cyanobacterium Prochlorococcus and the purple bacterium
R. palustris, the cyanobacterium S. elongatus harbors all three Kai proteins, KaiA, KaiB,
and KaiC, and can (therefore) exhibit self-sustained, limit-cycle oscillations [3]. The cir-
cadian system combines a transcription-translation cycle (TTC) [23–25] with a protein
phosphorylation cycle (PPC) of KaiC [26], and in 2005 the latter was reconstituted in the
test tube [4]. The dominant pacemaker appears to be the protein phosphorylation cycle
[15, 27], although at higher growth rates the transcription-translation cycle is important
for maintaining robust oscillations [15, 27]. Changes in light intensity induce a phase
shift of the in-vivo clock and cause a change in the ratio of ATP to ADP levels [8]. More-
over, when these changes in ATP/ADP levels were experimentally simulated in the test
tube, they induced a phase shift of the protein phosphorylation cycle which is similar
to that of the wild-type clock [8]. These experiments indicate that the phosphorylation
cycle is not only the dominant pacemaker, but also the cycle that couples the circadian
system to the light input. We therefore focused on the protein phosphorylation cycle.
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1

Figure 4.6: The coupled-hexamer model. (A) Time trace of p(t ) in the presence of driving (green
line) and absence of driving (blue line). In the absence of driving, the system exhibits stable, limit-
cycle oscillations. (B) The mutual information I (p; t ) as a function of the intrinsic frequency, which
was varied by scaling all phosphorylation rates {kps,ki ,kb} by a factor q . It is seen that there exists
an optimal (de)phosphorylation rate that maximizes I (p; t ), which weakly depends on σ2

s . It cor-
responds to an intrinsic period T0 = 25.1h of the free-running clock. The noise correlation time
τc = 0.5h.

Due to the wealth of experimental data, the in-vitro protein phosphorylation cycle
of S. elongatus has been modeled extensively in the past decade [11–17]. In [17] we
presented a very detailed thermodynamically consistent statistical-mechanical model,
which is based on earlier models [11, 15, 16] and can explain most of the experimental
observations. The coupled-hexamer model (CHM) presented here is a minimal version
of these models. It contains the necessary ingredients for describing the autonomous
protein-phosphorylation oscillations and the coupling to the light input, i.e. the ATP/ADP
ratio.

The model is similar to the uncoupled-hexamer model described in the previous sec-
tion, with KaiC switching between an active state in which the phosphorylation level
tends to rise and an inactive in which it tends to fall. The key difference between the two
systems is that the CHM also harbors KaiA, which synchronizes the oscillations of the
individual hexamers via the mechanism of differential affinity [11, 12], allowing for self-
sustained oscillations. Specifically, KaiA is needed to stimulate phosphorylation of ac-
tive KaiC, yet inactive KaiC can bind kaiA too. Consequently, inactive hexamers that are
in the dephosphoryation phase of the phosphorylation cycle—the laggards—can take
away KaiA from those KaiC hexamers that have already finished their phosphorylation
cycle—the front runners. These front runners are ready for a next round of phospho-
rylation, but need to bind KaiA for this. By strongly binding and sequestering KaiA, the
laggards can thus take away KaiA from the front runners, thereby forcing them to slow
down. This narrows the distribution of phosphoforms, and effectively synchronizes the
phosphorylation cycles of the individual hexamers [11]. The mechanism appears to be
active not only during the inactive phase, but also during the active phase: KaiA has a
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higher binding affinity for less phosphorylated KaiC [11, 16]. Since KaiB serves to mainly
stabilize the inactive state and mediate the sequestration of KaiA by inactive KaiC, KaiB
is, as in the UHM and following [16, 17], only modelled implicitly.

Model Since computing the mutual information accurately requires very long sim-
ulations, we sought to develop a minimal version of the PPC model presented in [11,
15, 28], which can describe a wealth of data including the concentration dependence of
the self-sustained oscillations and the coupling to ATP/ADP [11, 18, 28]. This model is
described by the following chemical rate equations:

ċ0 =ksc̃0 − s(t )c0

[
k0

A

A+K0
+kps

K0

A+K0

]
(4.16)

ċi =s(t )ci−1

[
ki−1

A

A+Ki−1
+kps

Ki−1

A+Ki−1

]
− s(t )ci

[
ki

A

A+Ki
+kps

Ki

A+Ki

]
i ∈ (1, . . . ,5) (4.17)

ċ6 =s(t )c5

[
k5

A

A+K5
+kps

K5

A+K5

]
−ksc6 (4.18)

˙̃c6 =ksc6 −kbc̃6 (4.19)
˙̃ci =kb(c̃i+1 − c̃i ) i ∈ (1, . . . ,5) (4.20)
˙̃c0 =kbc̃1 −ksc̃0 (4.21)

A =AT −
5∑

j=0
c j

A

A+K j
−

6∑
j=0

b j c̃ j
Ab j

Ab j + K̃
b j

j

(4.22)

Here, ci and c̃i are the concentrations of active and inactive i -fold phosphorylated KaiC,
A is the concentration of free KaiA. The rates ki are the rates of KaiA-stimulated phos-
phorylation of active KaiC and kps is the spontaneous phosphorylation rate of active
KaiC when KaiA is not bound. Please note that both rates are multiplied by the input
signal s(t ), since both rates depend on the ATP/ADP ratio [17]. The dephosphorylation
rate kb is independent of the ATP/ADP ratio [16, 17] and hence kb is not multiplied with
s(t ). As in the UHM, ks is the conformational switching rate. The last equation, Eq. 4.22,
gives the concentration A of free KaiA under the quasi-equilibrium assumption of rapid
KaiA (un)binding by active KaiC with affinity Ki (second term right-hand side) and rapid
binding of KaiA by inactive KaiC, where each i -fold phosphorylated inactive KaiC hex-
amer can bind bi KaiA dimers (last term right-hand side Eq. 4.22). The mechanism of
differential affinity is implemented via two ingredients: 1) the dissociation constant of
KaiA binding to active KaiC, Ki , depends on the phosphorylation level i , with less phos-
phorylated KaiC having a higher binding affinity: Ki < Ki+1 [11, 16, 17]; 2) inactive KaiC
can strongly bind and sequester KaiA [11, 16, 17]; this is modeled by the last term in
Eq. 4.22.

Autonomous oscillations Fig. 4.6A shows a time trace of p(t ) (Eq. 4.14) for both a
driven and a non-driven coupled-hexamer model. Clearly, in contrast to the push-pull
network and the uncoupled-hexamer model, this system exhibits free running simula-
tions. Note also that the autonomous oscillations are slightly asymmetric as observed
experimentally, and as shown also by the detailed models on which this minimal model
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is based [11, 15]. Lastly, while the driving signal is sinusoidal, the output signal of the
driven system remains non-sinusoidal. This is because this system is non-linear; this be-
havior is indeed in marked contrast to the behavior seen for the linear UHM (see Fig. 4.5)
and that of the PPN (Fig. 4.4) which operates in the linear regime. The slight asymme-
try in the oscillations also explains why in the regime of very low noise, this system has
a slightly lower mutual information than that of push-pull network or the uncoupled-
hexamer model, as seen in Fig. 1 of the main text.

Setting the parameters
We first set the parameters to get autonomous oscillations, keeping s(t ) = s̄ = 2. These
parameters were inspired by the parameters of the model upon which the current model
is built [11]. Specifically, the KaiA binding affinity of active KaiC, given by Ki , was chosen
such that it obeys differential affinity, K0 < K1 < K2 < K3 < K4 < K5 , as in the PPC model
of [11, 15, 28]. In addition, in our model, bi = 2 for i = 1,2,3,4 and bi = 0 for i = 0,5,6,
meaning that i = 1−4 fold phosphorylated inactive KaiC hexamers can each bind two
KaiA dimers with strong affinity K̃i = K̃ . The conformational switching rate ks was set
to be higher than all the (de)phosphorylation rates, ks >> {ki ,kps,kb} and the values of
ki ,kps,kb were, again apart from a scaling factor to set the optimal intrinsic frequency,
identical to those of the PPC model of [11, 16, 28]. These parameter values allowed for
robust free-running oscillations (see Fig. 4.6A) in near quantitative agreement with the
oscillations of the more detailed PPC model of [11, 16, 28].

Optimal intrinsic frequency We then studied the driven system. We varied the in-
trinsic frequency ω0 of the autonomous oscillations by varying all (de) phosphorylation
rates {ki ,kps,kb} by a constant factor and computed the mutual information I (p; t ) as a
function of this factor and hence ω0. The result is shown in Fig. 4.6B. Clearly, as for the
uncoupled-hexamer model, there exists an optimal intrinsic frequency ωopt

0 that max-
imizes the mutual information I (p; t ). The optimal intrinic frequency depends on the
input-noise strength: for low input noise, ωopt

0 < ω, but then ω
opt
0 increases with σ2

s to
become similar toω in the high noise regime. We also see, however, that the dependence
ofωopt

0 onσ2
s is weak (Fig. 4.6B), and we therefore kept the parameters in the simulations

corresponding to Fig. 2 of the main text, constant. Lastly, we note that we have verified
that, as observed for the uncoupled-hexamer model, the key parameter for optimizing
I (p; t ) is kf s̄, because that sets the intrinsic frequency, and not kf and s̄ separately. Ta-
ble 4.1 gives an overview of all the parameters; this parameter set thus corresonds to a
free-running rhythm of ωopt

0 = 0.96ω, corresponding to an intrinsic period T0 = 25.1h.

4.4.5. ROBUSTNESS OF OBSERVATIONS

We have tested the robustness of our principal result, shown in Fig. 2 of the main text, by
varying a number of key parameters. We first varied the correlation time τc of the noise,
see Fig. 4.7A. Clearly, the main result is robust to variations in the value of τc : in the
limit of small input-noise σ2

s all three time-keeping systems are equally accurate, while
for large input noise the bonafide clock is far superior. We have also varied the nature
of the input signal. Specifically, instead of a sinusoidal signal we have also studied a
truncated sinusoidal signal s(t ), which drops to zero for 12 hours during the night but is
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a half-sinusoid for 12 hours during the day:

s(t ) = h(t )
{
sin(ωt )+ηs (t )

}
, (4.23)

where h(t ) = 0 for 0 < t < 12 and h(t ) = 1 for 12 < t < 24. The result is shown in Fig. 4.7B.
It is seen that the principal result of Fig. 2 of the main text is also insensitive to the precise
choice of the input signal.

The robustness of our principal observations indicate they are universal and should
be observable in minimal generic models. These are described in the next sections.

PPN:
UHM:
CHM:

Figure 4.7: Robustness of the pricipal resut of our paper, Fig. 2 of the main text. (A) Robustness to
correlation time of the input noise. It is seen that increasing the correlation time τc of the input
noise lowers the mutual information I (p; t ). This is because a higher correlation time impedes
noise averaging [29–31]. Yet, for all values of τc the result of Fig. 2 of the main text is recapitulated:
when the input-noise strength σ2

s is low, all readout systems are equally accurate; yet, in the high
noise regime, the coupled-hexamer model is superior. (B) Robustness to the shape of the input sig-
nal. Here, the input is a truncated sinusoidal signal so that during the night s(t ) = 0, while during
the day s(t ) is a half sinusoid (see Eq. 4.23). As expected, shutting off the driving during the night
lowers the mutual information (compare with panel A). More strikingly, in the regime of low input
noise, all readout systems are again equally informative on time. Clearly, the push-pull network
and uncoupled-hexamer model do not need to be driven constantly; it is sufficient that the light
drives the phosphorylation of the readout proteins during the day, so that they can dephospho-
rylate spontaneously during the night. In the regime of high input-noise, the coupled-hexamer
system is again optimal. In panel B, the noise correlation time τc = 0.5h. Other parameters are in
Table 4.1.

4.4.6. COMPUTING THE MUTUAL INFORMATION

The mutual information is computed using the following relation

I (p; t ) = H(p)−〈H(p|t )〉t . (4.24)
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where

H(p) =−
∫ 1

0
d pP (p) logP (p) (4.25)

is the entropy of the distribution P (p) of the phosphorylation fraction p(t ) and

〈H(p|t )〉t =− 1

T

∫ T

0
d t

∫ 1

0
d pP (p|t ) logP (p|t ) (4.26)

is the average of the conditional entropy of P (p|t ), with P (p|t ) the conditional distribu-
tion of p given t . In numerically computing the mutual information, we have verified
that the results are independent of the bin size of the distribution of p, following the
approach of [32]. We also note that when the input noise is exactly zero, the mutual
information diverges because the system is deterministic. The highest mutual informa-
tion reported corresponds to the smallest input-noise level modeled, which is non-zero,
leading to a finite mutual information.

4.5. ANALYTICAL MODELS

4.5.1. PUSH-PULL NETWORK

The equation for the push-pull network is

ẋp = kfs(t )(xT −xp (t ))−kbxp (4.27)

' kfs(t )xT −kbxp , (4.28)

where in the last equation we have assumed that xT À xp , which is the case when
kfs(t ) ¿ kb. In this regime, the push-pull network operates in the linear regime, lead-
ing to sinusoidal oscillations, which tend to enhance information transmission [19]. In
what follows, we write, to facilitate comparison with other studies on noise transmission
[19, 33] ρ ≡ kfxT, µ= kb and, for notational convenience, xp = x. We thus study

ẋ = ρs(t )−µx(t ). (4.29)

The equation can be solved analytically to yield

x(t ) =
∫ t

−∞
d t ′χ(t − t ′)s(t ), (4.30)

with χ(t − t ′) = ρe−µ(t−t ′). With the input signal given by

s(t ) = sin(ωt )+ s̄ +ηs (t ), (4.31)

the output is

x(t ) = A sin(ωt −φ)+ x̄ +ηx (t ) (4.32)

where the amplitude is

A = ρ√
µ2 +ω2

, (4.33)
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the phase difference of the output with the input is

φ= arctan(ω/µ), (4.34)

the mean is

x̄ = ρ s̄/µ (4.35)

and the noise is

ηx = ρ
∫ t

−∞
d t ′e−µ(t−t ′)ηs (t ′). (4.36)

The variance of the output, assuming the system is in steady state, is then

σ2
x = 〈(x(0)− x̄(0))2〉 (4.37)

= ρ2
∫ 0

−∞

∫ 0

−∞
d td t ′eµ(t+t ′)〈ηs (t )ηs (t ′)〉. (4.38)

Assuming that the input noise has varianceσ2
s and decays exponentially with correlation

time τc =λ−1, meaning that 〈ηs (t )ηs (t ′)〉 =σ2
s e−λ|t−t ′|, the variance of the output is

σ2
x = ρ2σ2

s

[∫ 0

−∞

∫ t

−∞
d td t ′eµ(t+t ′)e−λ(t−t ′)+ (4.39)∫ 0

−∞

∫ 0

t
d td t ′eµ(t+t ′)e+λ(t−t ′)

]
(4.40)

= g 2 µ

µ+λσ
2
s , (4.41)

with the gain given by g ≡ ρ/µ.
The signal-to-noise ratio A/σx is then

A

σx
=

√
µ(µ+λ)

µ2 +ω2

1

σs
, (4.42)

which has a maximum at the optimal relaxation rate [19]

µopt = ω2

λ

(
1+

√
1+ (λ/ω)2

)
. (4.43)

This optimum arises from a trade-off between the amplitude, which increases as µ in-
creases, and input-noise averaging, which improves as µ decreases. Another point to
note is that the optimal signal-to-noise ratio does not depend on ρ = kfxT, and hence
not on kf and xT: while increasing ρ increases the amplitude of the signal, it also am-
plifies the noise in the input signal. Increasing the gain ρ (via xT and/or kf) only helps
in the presence of intrinsic noise, because increasing the amplitude of the signal helps
to raise the signal above the intrinsic noise [19]. However, in the deterministic models
considered in this study, the intrinsic noise is zero.
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4.5.2. THE HARMONIC OSCILLATOR AND THE UNCOUPLED-HEXAMER MODEL

The uncoupled-hexamer model (UHM) is linear. Moreover, because each hexamer has a
phosphorylation cycle with a characteristic oscillatino frequency ω0, this system is akin
to the harmonic oscillator. Indeed, when not driven, both the UHM and the harmonic
oscillator relax in an oscillatory fashion to a stable fixed point. To develop intuition on
the behavior of the UHM, we therefore here analyze the behavior of a harmonic oscillator
driven by a noisy sinusoidal signal.

The equation of motion of the driven harmonic oscillator is

ẍ +ω2
0x +γẋ = ρs(t ), (4.44)

where ω0 is the characteristic frequency, γ is the friction and ρ describes the strength
of the coupling to the input signal s(t ). We assume that s(t ) = sin(ωt )+ηs (t ). We note
that while the undriven harmonic oscillator is isomorphic to the undriven UHM, their
coupling to the input is different: in the UHM, the hexamers are, motivated by the Kai
system [8, 9], only coupled to the input during their active phosphorylation phase, while
the harmonic oscillator is coupled continuously; moreover, in the harmonic oscillator
the noise is additive, while in the UHM the signal multiplies the phosphorylation rate,
leading to multiplicative noise. Yet, the behavior of the two models is qualitatively simi-
lar, as discussed below.

Solving Eq. 4.44 in Fourier space yields x̃(ω) = χ̃(ω)s̃(ω), with

χ̃(ω) = ρ

ω2
0 −ω2 − iωγ

. (4.45)

Hence, the time evolution of x(t ) is

x(t ) = 1

2π

∫ ∞

−∞
dωe−iωt χ̃(ω)s(ω) (4.46)

= ρ

2π

∫ ∞

−∞
dω

∫ ∞

−∞
d t ′

e iω(t ′−t )s(t ′)
ω2

0 −ω2 − iωγ
. (4.47)

We do the integral over ω first. The integrand has poles at

ω= −iγ

2
±

√
ω2

0 −
γ2

4
≡ −iγ

2
±ω1. (4.48)

This yields

x(t ) = ρ

2π

∫ ∞

−∞
s(t ′)θ(t − t ′)(2πi )× (4.49)[

e i (−i γ2 +ω1)(t ′−t )

2ω1
− e i (−i γ2 −ω1)(t ′−t )

2ω1

]
(4.50)

= ρ

ω1

∫ t

−∞
d t ′e−

γ
2 (t−t ′) sin(ω1(t − t ′))s(t ′). (4.51)



4

104 4. ROBUSTNESS OF CLOCKS TO INPUT NOISE

With s(t ) = sin(ωt ), this yields

x(t ) = −γωcos[ωt ]+ (−ω2 +ω2
0)sin[ωt ]

γ2ω2 + (ω2 −ω2
0)2

(4.52)

This can also be rewritten as

x(t ) = A sin(ωt +φ), (4.53)

with the amplitude given by

A = ρ√
γ2ω2 + (ω2 −ω2

0)2
(4.54)

and the phase given by

φ= arctan

[
−4γω

γ2 +4(ω2
1 −ω2)

]
. (4.55)

Eq. 4.54 shows that the amplitude increases as the friction decreases and that the ampli-
tude is maximal when the intrinsic frequency equals the driving frequency; in fact, when
γ→ 0 and ω0 =ω, the amplitude diverges.

With an input noise with variance σ2
s and decay rate λ, the noise in the output, σ2

x =
〈δx2(0)〉, is given by

σ2
x = ρ2

ω2
1

∫ 0

−∞
d t

∫ 0

−∞
d t ′e

γ
2 (t+t ′) sin(ω1t )sin(ω1t ′)〈ηs (t )ηs (t ′)〉 (4.56)

= ρ2σ2
s

ω2
1

[∫ 0

−∞
d t

∫ t

−∞
d t ′e

γ
2 (t+t ′) sin(ω1t )sin(ω1t )e−λ(t−t ′)

+
∫ 0

−∞
d t

∫ 0

t
d t ′e

γ
2 (t+t ′) sin(ω1t )sin(ω1t ′)e−λ(t ′−t )

]
(4.57)

= ρ2σ2
s

16(γ+λ)

γ[(γ+2λ)2 +4ω2
1](γ2 +4ω2

1)
(4.58)

= ρ2σ2
s

(γ+λ)

γω2
0[λ(γ+λ)+ω2

0]
(4.59)

This expression shows that the noise diverges for all frequencies when the friction γ→ 0.
It also shows that the noise diverges for ω0 → 0 for all values of γ, or, conversely, that
it goes to zero for ω0 → ∞. This can be understood by imagining a particle with mass
m = 1 in a harmonic potential well with spring constant k, giving a resonance frequency
ω2

0 = k/m = k, which is buffeted by stochastic forces: its variance decreases as the spring
constant k and intrinsic frequency ω0 increase.
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Figure 4.8: The amplitude (A), standard deviation σx (B), and signal-to-noise ratio A/σx (C) as a
function of the the intrinsic frequency ω0 and friction γ for the harmonic oscillator. It is seen that
the amplitude peaks when γ= 0 and the intrinsic frequency equals the driving frequency, ω0 =ω

(A). The noise peaks at γ = 0 and at ω0 = 0 (B). Because the amplitude peaks at ω0 = ω, while the

noise peaks at ω0 = 0, there is an optimal intrinsic frequency ω
opt
0 >ω that maximizes the signal-

to-noise ratio (C). See also Fig. 4.9.
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Figure 4.9: The signal-to-noise A/σx of the harmonic oscillation as a function of ω0 for different
values of γ. Because the amplitude A exhibits a strong maximum atω0 =ω, the SNR peaks around
ω0 = ω. However, the maximum is not precisely at ω0 = ω, because the noise σx peaks at ω0 = 0
and not at ω0 = ω. Depending on the friction, there thus exists an optimal intrinsic frequency

ω
opt
0 >ω. Note also that when ω 6=ω0, it is actually beneficial to have friction, γ 6= 0.

Figs. 4.8 and 4.9 show the amplitude A, noise σ2
x , and signal-to-noise ratio A/σx for

the harmonic oscillator. Clearly, the amplitude is maximal at resonance, diverging when
γ→ 0 (Fig. 4.8A). The noise is maximal at ω0 → 0, and also diverges for all frequencies
when γ → 0 (Fig. 4.8B). However, the amplitude rises more rapidly as γ → 0 than the
noise does, leading to a global optimum of the signal-to-noise ratio forω0 =ω and γ→ 0
(Fig. 4.8C). However, biochemical networks have, in general, a finite friction, and then
the optimal intrinsic frequency is off resonance, as most clearly seen in Fig. 4.9. In fact,
since the noise is minimized forω0 →∞ while the amplitude is maximized at resonance,
ω0 =ω, the optimal frequency ωopt

0 that maximizes the signal-to-noise ratio is in general

ω
opt
0 >ω, as indeed also observed for the uncoupled hexamer model (see Fig. 4.5B).

Because noise is commonly modeled as Gaussian white noise, as in our Stuart-Landau
model below, rather than colored noise as assumed here, we also give, for complete-
ness, the expression for σ2

x when the input noise is Gaussian and white, 〈ηs (t )ηs (t ′)〉 =
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σ2
s,whiteδ(t − t ′). It is

σ2
x =

ρ2σ2
s,white

2γω2
0

. (4.60)

This is consistent with Eq. 4.59, by noting that the integrated noise strength of the colored
noise is 2

∫ ∞
0 d tσ2

s e−λt = 2σ2
s /λ, while the integrated noise strength of the white noise

case is σ2
s,white. Indeed, with this identification, Eq. 4.59 in the limit of large λ reduces to

the above expression for the white noise case.

4.5.3. COMPARISON BETWEEN PUSH-PULL NETWORK AND HARMONIC OS-
CILLATOR IN THE HIGH FRICTION LIMIT

Intuitively, one would expect that in the high-friction limit the harmonic oscillator per-
forms similarly to the push-pull network. The signal-to-noise ratio SNR = A/σx indeed
becomes the same in this limit. However, the amplitude and the noise separately scale
differently, because the friction in the harmonic oscillator also reduces the strength of
the signal and the noise: in the high-friction limit, the equation of motion of the har-
monic oscillator becomes ẋHO = ρs(t )/γ−ω2

0/γx(t )+ρηs (t )/γ, showing that the friction
renormalizes both the signal and the noise. However, such a renormalization of both the
signal and the noise should not affect the signal-to-noise ratio. Moreover, we now see
that in this high-friction limit the harmonic oscillator relaxes with a rate ω2

0/γ, which is
to be compared with µ of the push-pull network, for which ẋPP = ρs(t )−µx(t )+ρηs (t ).
From this we can anticipate that while the amplitude and the noise will be different, the
signal-to-noise ratio will be the same. Concretely, in the high-friction limit the ampli-
tude, the noise and the signal-to-noise ratio of the harmonic oscillator become

AHO = ρ

γω
(4.61)

σHO
x = ρσs

ω0
√
γλ

(4.62)

SNRHO =
√
ω2

0

γ

p
λ

ω
=

√
µλ

ω
, (4.63)

where in the last line we have made the identification µ = ω2
0/γ. For the push-pull net-

work, the corresponding quantities, in the limit that µ→ 0, are

APP = ρ

µ
(4.64)

σPP
x = ρσs

µλ
(4.65)

SNRPP =
√
µλ

ω
. (4.66)

Clearly, the signal-to-noise ratio of the two models are the same in the limit of high fric-
tion.
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Fig. 4.10 compares the behaviour of the harmonic oscillator against that of the push-
pull system. Clearly, for small γ, the signal-to-noise ratio SNR of the harmonic oscil-
lator is larger than that of the push-pull network, showing that building an oscillatory
tendency with a resonance frequency into a readout system can enhance the signal-to-
noise ratio. However, in the large-friction limit, the SNR is the same of both models, as
expected.
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HO: ω0=1.05ω

Push-Pull

Figure 4.10: The signal-to-noise A/σx as a function of γ for the harmonic oscillator and the push-
pull network. For the harmonic oscillator, the friction is varied, while ω0 is kept constant; for
the push-pull network µ is varied according to µ = ω2

0/γ. It is seen that for low and intermediate
friction the harmonic oscillator outperforms the push-pull network, but that in the high-friction
limit they perform similarly.

4.5.4. WEAKLY NON-LINEAR OSCILLATOR AND THE COUPLED-HEXAMER MODEL

The coupled-hexamer model (CHM) is a non-linear oscillator that can sustain autonomous
limit-cycle oscillations in the absence of any driving. Here, we describe the Stuart-Landau
model, which provides a universal description of a weakly non-linear system near the
Hopf bifurcation where a limit cycle appears. We use it to analyze the time-keeping prop-
erties of a system as it is altered from essentially a damped linear oscillator to a weakly
non-linear oscillator, see Fig. 3 of the main text. Our treatment follows largely that of
Pikovsky et al. [22].

THE AMPLITUDE EQUATION

We consider the weakly non-linear oscillator [22]:

ẍ +ω2
0x = f (x, ẋ)+ρs(t ), (4.67)

with s(t ) = sin(ωt )+ s̄ +ηs being the driving signal as before. The quantity f (x, ẋ) de-
scribes the non-linearity of the autonomous oscillator and the parameter ρ controls the
strength of the forcing. The description presented below is valid in the regime where the
non-linearity f (x, ẋ) is small and the strength of the driving, quantified by ρ, is small. We
begin by developing the formalism in the deterministic limit ηs = 0, in which s(t ) is peri-
odic with period T = 2π/ω, before returning to the effects of noisy driving. In contrast to
previous sections, our discussion here is limited to input noise that is not only Gaussian
but white, 〈ηs (t )〉 = 0 and 〈ηs (t )ηs (t ′)〉 =σ2

sδ(t − t ′).
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Eq. 4.67 is close to that of a linear oscillator. We therefore expect that its solution has
a nearly sinusoidal form. Moreover, we expect at least over some parameter range the
frequency of the system is entrained by that of the driving signal. We therefore write the
solution as

x(t ) = Re
[

A(t )e iωt
]
= 1

2

(
A(t )e iωt +c.c.

)
, (4.68)

where c.c. denotes complex conjugate. The above equation has the form of an harmonic
oscillation with frequency ω, but with a time-dependent complex amplitude A(t ). We
emphasize that the observed frequency may deviate from ω, when the amplitude A(t )
rotates in the complex plane.

The above equation determines only the real part of the complex number A(t )e iωt .
To fully specify A(t ), we also need to set the imaginary part of A(t )e iωt , which we choose
to do via

y(t ) =−ωIm
[

A(t )e iωt
]
= 1

2

(
iωA(t )e iωt +c.c.

)
(4.69)

= ẋ. (4.70)

The relation y(t ) = ẋ thus specifies the imaginary part of the amplitude A(t ). Hence, the
complex amplitude can be written as

A(t )e iωt = x(t )− i y(t )/ω. (4.71)

Writing A(t ) = R(t )e iφ(t ), it can be verified that

x(t ) = R(t )cos(φ(t )+ωt ) (4.72)

y(t ) =−ωR(t )sin(φ(t )+ωt ) (4.73)

R2(t ) = x2(t )+ y2(t )/ω2, (4.74)

and that the specification ẋ(t ) = y(t ) implies that

Ṙ(t )

R(t )
= φ̇(t ) tan(φ(t )+ωt ). (4.75)

Eq. 4.73 shows that the time derivative of y(t ) is

ẏ =−ω2x

−ω[
Ṙ(t )sin(φ(t )+ωt )+R(t )φ̇(t )cos(φ(t )+ωt )

]
(4.76)

On the other hand, we know that

iωȦe iωt =−ω[
Ṙ(t )sin(φ(t )+ωt )+R(t )φ̇(t )cos(φ(t )+ωt )

]
+ iω

[
Ṙ(t )cos(φ(t )+ωt )−R(t )φ̇(t )sin(φ(t )+ωt )

]
(4.77)

= ẏ +ω2x. (4.78)

where in Eq. 4.77 we have exploited that the imaginary part is zero because of Eq. 4.75.
Combing the above equation with Eq. 4.67, noting that ẏ = ẍ, yields the following equa-
tion for the time evolution of the amplitude:

Ȧ = e−iωt

iω

[
(ω2 −ω2

0)x + f (x, y)+ρs(t )
]

. (4.79)
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AVERAGING

The above transformation is exact. To make progress, we will use the method of averag-
ing [34]. Specifically, we will time average Eq. 4.79 over one period T [22, 34]. Averag-
ing the driving e−iωt s(t )/(iω) yields the complex constant E/(2ω). The second term of
Eq. 4.79 can be expanded in polynomials of x(t ) = (1/2)ReA(t )e iωt and y(t ) = (1/2)ImA(t )e iωt ,
yielding powers of the type (A(t )e iωt )n(A∗(t )e−iωt )m . After multiplying with e−iωt and
averaging over one period T , only the terms with m = n−1 do not vanish. Consequently,
the terms that remain after averaging have the form g (|A|2)A, with an arbitrary function
g . For small amplitudes only the linear term proportional to A and the first non-linear
term, ∝ |A|2 A term are important. Finally, averaging the first term of Eq. 4.79 yields a
term linear in A.

Summing it up, the time evolution of the amplitude of the system with deterministic
driving (ηs = 0) is given by [22]

Ȧ =−i
ω2 −ω2

0

2ω
A+αA− (β+ iκ)|A|2 A− ρ

2ω
E (4.80)

The parameters have a clear interpretation. The parameters α and β describe, respec-
tively, the linear and non-linear growth or decay of oscillations. To have stable oscilla-
tions, both in the presence and absence of driving, large amplitude oscillations domi-
nated by the non-linear term need to decay, which means that β must be positive, β> 0;
this parameter is fixed in all our calculations. The parameter that allows us to alter the
system from one that shows damped oscillations in the absence of driving to one that
can generate autonomous oscillations which do not rely on forcing, is α. For the system
to sustain free-running oscillations, small amplitude oscillations, dominated by the lin-
ear term, must grow, meaning that α must be positive, α > 0. The case with α > 0 thus
describes a system that can perform stable limit cycle oscillations, making it a bonafide
clock. The case α < 0 describes a system that in the absence of any driving, E = 0, re-
laxes in an oscillatory fashion to a stable fixed point with A = 0. In the presence of weak
driving, the amplitude A at the fixed point will be non-zero but small, making the effect
of the non-linearity weak. The case α < 0 thus describes a system that is effectively a
damped harmonic oscillator, which only displays sustained oscillations when forced by
an oscillatory signal. This system mimics the uncoupled-hexamer model.

The parameter κ describes the non-linear dependence of the oscillation frequency
on the amplitude. For the isochronous scenario in which the phase moves with a con-
stant velocity, κ= 0, which is what we will assume henceforth.

Defining the parameter ν≡ (ω2−ω2
0)/(2ω) and the parameter ε≡ ρ/(2ω), we can then

rewrite the above equation as

Ȧ =−iνA+αA−β|A|2 A−εE , (4.81)

where A is the complex time-dependent amplitude, E is a complex constant, and ν, α,
and β are real constants. Eq. 4.81 is Eq. 2 of the main text. It provides a universal de-
scription of a driven weakly non-linear system near the Hopf bifurcation where the limit
cycle appears [22].

To model the input noise we will add the noise term to Eq. 4.81:

Ȧ =−iνA+αA−β|A|2 A−εE +ρη̄s (t ), (4.82)
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where η̄s (t ) is the noise ηs (t ) averaged over one period of the driving:

η̄s (t ) ≡ 1

T

∫ t+T /2

t−T /2
d t ′

e−iωt ′

iω
ηs (t ′). (4.83)

Since ηs (t ) is real but its pre-factor e−iωt /iω is complex, s̄(t ) is, in general, complex.
Below we will describe the characteristics of the noise η̄s .

LINEAR-NOISE APPROXIMATION

Scenarios By varying α we will interpolate between two scenarios: the damped oscilla-
tor, modelling the UHM, withα< 0, and the weakly non-linear oscillator that can sustain
free-running oscillations, modelling the CHM, with α> 0. For the system with α< 0, the
amplitude of x(t ) when not driven is A = 0: the system comes to a standstill. When the
system is driven, the amplitude will be nonzero, but constant since the system is essen-
tially linear as described above. For the system with α> 0, A(t ) can exhibit distinct types
of dynamics, depending on the strength of driving and the frequency mismatch charac-
terized by ν [22]. However, here we do not consider the regimes that A(t ) rotates in the
complex plane; we will limit ourselves to the scenario that A(t ) = A is constant, meaning
that ν cannot be too large [22].

Overview Before we discuss the linear-noise approximation in detail, we first give
an overview. The central observation is that both for the driven damped oscillator with
α < 0 and the driven limit-cycle oscillator with α > 0, the complex amplitude A is con-
stant, corresponding to a stable fixed point of the amplitude equation, Eq. 4.81. In the
spirit of the linear-noise approximation used to calculate noise in biochemical networks,
we then expand around the fixed point to linear order, and evaluate the noise at the fixed
point. This approach thus assumes that the distribution of the variables of interest is
Gaussian, centred at the fixed point. More concretely, we first expand A(t ) to linear or-
der around its stable fixed point, which is obtained by setting Ȧ in Eq. 4.81 to zero. This
makes it possible to compute the variance of A. Importantly, this variance is that of a
Gaussian distribution in the frame that co-rotates with the driving, as can be seen from
Eqs. 4.72 and 4.73. To obtain the variance of x and y in the original frame, we then trans-
form this distribution back to original frame of x and y . If we can make this transforma-
tion linear, then it is guaranteed that the distribution of x and y will also be Gaussian. As
we will see, the transformation can be made linear by writing A as A = u + i v , where u
and v are the real and imaginary parts of A, respectively.

Expanding A around its fixed point We write A(t ) = u(t )+ i v(t ). Eq. 4.82 then yields
for the real and imaginary part of a(t ):

u̇ = νv +αu −β(u2 + v2)u −εeu +ρη̄u (4.84)

v̇ =−νu +αv −β(u2 + v2)v −εev +ρη̄v (4.85)

Here, η̄u and η̄v are the real and imaginary parts of the averaged noise η̄s , given by
Eq. 4.83; they are discussed below. The quantities eu and ev are the real and imaginary
parts of the driving E . Their respective values depend on the phase of the driving, which
is arbitrary and can be chosen freely. For example, when the driving is s(t ) = sin(ωt ),
then eu = 1 and ev = 0, while if the signal is s(t ) = cos(ωt ), then eu = 0 and ev = 1.



4.5. ANALYTICAL MODELS

4

111

We now expand u(t ) and v(t ) around their steady-state values, u∗ and v∗, respec-
tively. Inserting this in the above equations and expanding up to linear order yields

δ̇u = c1δu + c2δv +ρη̄u (4.86)

δ̇v = c3δu + c4δv +ρη̄v , (4.87)

with

c1 =α−β(3u∗2 + v∗2) (4.88)

c2 = ν−β2u∗v∗ (4.89)

c3 =−ν−β2u∗v∗ (4.90)

c4 =α−β(u∗2 +3v∗2). (4.91)

The fixed points u∗ and v∗ are obtained by solving the cubic equations Eqs. 4.84 and 4.85
in steady state.

Noise characteristics We next have to specify the noise characteristics of η̄u(t ) and
η̄v (t ). Eq. 4.83 reveals that the noise terms are given by

η̄u(t ) =− 1

ωT

∫ t+T /2

t−T /2
d t ′ sin(ωt ′)ηs (t ′) (4.92)

η̄v (t ) =− 1

ωT

∫ t+T /2

t−T /2
d t ′ cos(ωt ′)ηs (t ′). (4.93)

The method of averaging [35] reveals that to leading order the statistics of these quanti-
ties can be approximated by

〈η̄u(t )η̄u(t ′)〉 = 〈η̄v (t )η̄v (t ′)〉 = σ2
s

2ω2 δ(t − t ′) (4.94)

〈η̄u(t )η̄v (t ′)〉 = 0. (4.95)

Variance-co-variance From here, there are (at least) three ways to obtain the vari-
ance and co-variance matrix of u and v . Since the system is linear, it can be directly
solved in the time domain. Another route is via the power spectra [30, 36]. Here, we
obtain it from [37]

ACuv +Cuv AT =−Duv . (4.96)

The matrix Cuv is the variance-covariane matrix with elements σ2
uu ,σ2

uv ,σ2
vu ,σ2

v v and A
is the Jacobian of Eqs. 4.86 and 4.87 with elements A11 = c1, A12 = c2, A21 = c3, A22 = c4.
The matrix Duv is the noise matrix of 〈η̄2

u/v 〉, where we absorb the coupling strength
ρ = 2ωε (cf. Eq. 4.81) in the noise strength:

Duv =
(

2ε2σ2
s 0

0 2ε2σ2
s

)
. (4.97)

Transforming back The variance-covariance matrix Cuv , with elementsσ2
uu ,σ2

uv ,σ2
vu ,σ2

v v ,
characterizes a Gaussian distribution in the complex plane

P (u, v) = 1

2π
p|Cuv |

e−
1
2 aTC−1

uv a, (4.98)
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where |Cuv | is the determinant of the variance-covariance matrix Cuv and C−1
uv is the in-

verse of Cuv , and a is a vector with elements δu,δv (the deviations of the real and imag-
inary parts of A = a from their respective fixed points u∗ and v∗) with aT its transpose.
This distribution P (u, v) defines a distribution in the co-rotating frame of the oscillator
in the complex plane. To obtain P (x, y) in the original non-co-rotating frame, we need to
rotate this distribution. Eq. 4.71 shows that the corresponding rotation is described by

x(t ) = u cos(ωt )− v sin(ωt ) (4.99)

y(t ) =−ωu sin(ωt )−ωv cos(ωt ), (4.100)

which defines the rotation matrix

Q =
(

cos(ωt ) −sin(ωt )
−ωsin(ωt ) −ωcos(ωt )

)
(4.101)

such that z = Qa, with z the vector with elements δx(t ) = x(t )−x∗(t ),δy(t ) = y(t )− y∗(t ),
where x∗, y∗ are the rotating “fixed” points of x(t ) and y(t ), i.e. their time-dependent
mean values, given by Eqs. 4.99 and 4.100 with u = u∗ and v = v∗. Hence, the distribu-
tion of interest is given by

P (x, y |t ) = 1

2π
√|Cx y |

e−
1
2 zTC−1

x y z, (4.102)

where

C−1
x y = [Q−1]TC−1

uv Q−1 (4.103)

and its inverse Cx y is the variance-covariance matrix for x, y , with elements
σ2

xx (t ),σ2
x y (t ),σ2

y x (t ),σ2
y y (t ), which depend on time because Q depends on time.

Mutual information I (p; t ) Lastly, the oscillations in the phosphorylation p(t ) of the
hexamer models correspond to the oscillations in x(t ) in the Stuart-Landau model. We
therefore need to compute the mutual information I (x; t ), not I (x, y ; t ). Specifically, we
calculate the mutual information from

I (x, t ) = H(x)−〈H(x|t )〉t , (4.104)

where the entropy H(x) = −∫
d xP (x) logP (x) with P (x) = 1/T

∫ T
0 d tP (x|t ) and the con-

ditional entropy H(x|t ) =−1/T
∫ T

0 d t
∫

d xP (x|t ) logP (x|t ), with

P (x|t ) = 1/
√

2πσ2
xx (t )e−(x(t )−x∗(t ))2/(2σ2

xx (t )). We emphasize that both the variance σ2
xx (t )

and the average x∗(t ) depend on time.
Summing up Approach and Parameters Fig. 3 main text To sum up the procedure,

to compute the noise in A = a we first need to obtain the steady state values of its real and
imaginary part, ū and v̄ (see Eqs. 4.88-4.91). These are obtained from setting the time
derivatives of u(t ) and v(t ) in Eqs. 4.84 and 4.85 to zero; this involves solving a cubic
equation, which we do numerically. We then compute the variance-covariance matrix
Cuv via Eq. 4.96, where the elements of the Jacobian A are given by Eqs. 4.88-4.91 and the
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noise matrix Duv is given by Eq. 4.97. After having obtained Cuv , we find the variance-
covariance matrix for x and y , Cx y , from Eq. 4.103. For Fig. 3 of the main text, ν = 0,
β=ω, ε= 0.5ω.
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MI = 2.4 bits MI = 0.1 bits

MI = 1.9 bitsMI = 3.8 bits
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Figure 4.11: The dynamics of the Stuart-Landau model when α = −ω, corresponding to a
damped oscillator (D.O., top row), and when α = 3ω, corresponding to a limit-cycle oscillator
(L.C.O.,bottom row), both for low input noise, σ2

s = 0.001 (left column) and high input noise,
σ2

s = 0.1 (right column). Dashed line denotes the mean trajectory of (x, y), and the points are
samples of (x, y) from the distribution P (x, y |ti ) for evenly spaced time points ti ; P (x, y |t ) is given
by Eq. 4.102 and points belonging to the same time have the same color. It is seen that when the
input noise is low, the distributions corresponding to the different times are still well separated,
both for the limit-cycle oscillator and the damped oscillator. Yet, for high noise, only for the L.C.O.
are the distributions still reasonably separated, leading to a mutual information that is still close
to 2 bits. In contrast, for the D.O., the distributions are mixed, leading to a low mutual information
close to zero.

COMPARING LIMIT CYCLE OSCILLATOR WITH DAMPED OSCILLATOR

Fig. 3 of the main text shows that the mutual information I (x; t ) increases with α, es-
pecially when the input noise is large. To elucidate this further, we show in Fig. 4.11 for
two different values of α and for two levels of the input noise, the dynamics of the sys-
tem in the plane of x and y . The panels not only show the mean trajectory, indicated by
the dashed line, but also samples (x, y) from P (x, y |ti ) for evenly spaced time points ti ;
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P (x, y |t ) is given by Eq. 4.102 and samples from the same time point ti have the same
color. It is seen that when the input noise is low (left two panels), the respective dis-
tributions (“blobs”) are well separated, both for α = −ω, when the system is a damped
oscillator (D.O.) (top row), and for α= 3ω (bottom row), when the system is a limit-cycle
oscillator (L.C.O.). However, when the input noise is large (right column), the blobs of
the damped oscillator become mixed, while the distributions P (x, y |t ) of the limit-cycle
oscillator are still fairly well separated.

To interpret this further, we note that the mutual information I (x; t ) = H(t )−H(t |x).
Here, H(t ) is the entropy of the input signal, which is constant, i.e. does not depend
on the design of the system. The dependence of I (x; t ) on the design of the system
is thus governed by the conditional entropy, given by H(t |x) = 〈〈− logP (t |x)〉P (t |x)〉P (x).
The quantity 〈− logP (t |x)〉P (t |x) quantifies the uncertainty in estimating the time t from
a given output x; the average 〈. . .〉P (x) indicates that this uncertainty should be averaged
over all output values x weighted by P (x). The conditional entropy H(t |x) is low and
I (x; t ) is high when, averaged over x, the distribution P (t |x) of times t for a given x is
narrow. We can now interpret Fig. 4.11: The smaller the number of blobs that intersect
the line x, the higher the mutual information. Or, concomitantly, the more the distri-
butions are separated, the higher the mutual information—information transmission is
indeed a packing problem. Clearly, when the input noise is low, the time can be inferred
reliably from the output even with a damped oscillator (top left panel). For high input
noise, however, the mutual information of the damped oscillator falls dramatically be-
cause the blobs now overlap strongly. In contrast, the distributions of the limit-cycle
oscillator are still reasonably separated and I (x; t ) is still almost close to 2 bits.
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Figure 4.12: The dynamics of the Stuart-Landau model when α=−ω, corresponding to a damped
oscillator (D.O., top row), and when α= 3ω, corresponding to a limit-cycle oscillator (L.C.O., bot-
tom row), both for weak coupling, ε= 0.1ω (left column) and strong coupling, ε= 0.5ω (right col-
umn). Dashed line denotes the mean trajectory of (x, y), and the points are samples of (x, y) from
the distribution P (x, y |ti ) for evenly spaced times ti ; P (x, y |t ) is given by Eq. 4.102 and points be-
longing to the same time have the same color. It is seen that for the D.O. the amplitude and the
noise are small when the coupling is small (top left panel; note the scale on the x- and y-axis). In-
creasing the coupling, however, not only raises the amplitude, but also amplifies the noise, leaving
the mutual information unchanged: a damped oscillator cannot lift the trade-off between gain
and noise. In contrast, the limit-cycle oscillator already exhibits large amplitude oscillations even
for weak coupling. Especially the fluctuations in the radial direction, the amplitude fluctuations,
are strongly reduced in the L.C.O., due to the non-linearity of the system.

Fig. 4.11 also nicely illustrates that the mutual information would be increased if the
system could estimate the time not from x only, but instead from x and y : this removes
the degeneracy in estimating t for a given x associated with sinusoidal oscillations [19].
One mechanism to remove the degeneracy is to have a readout system that not only
reads out the amplitude of the clock signal, but also its derivative, for example via inco-
herent feedback loops [21]. Another possibility is that the clock signal is read out by 2
(or more) proteins that are out of phase with each other, as shown in [19]. Indeed, while
we have computed the instantaneous mutual information between time and the output
at a given time, the trajectory of the clock signal provides more information about time,
which could in principle be extracted by appropriate readout systens [19].
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Lastly, we show in Fig. 4.12 the dynamics for two different values of α and for two
different values of the coupling strength ε. The top left panel shows that when ε is small,
the amplitude of the damped oscillator is very weak—note the scale on the x- and y-
axis. To increase the amplitude of the output, the coupling strength must be increased.
However, this amplifies the input noise as well, such that the mutual information re-
mains unchanged (top right panel): the damped oscillator faces a fundamental trade-off
between gain and input noise that cannot be lifted. In contrast, the limit-cycle oscilla-
tor (bottom row) already exhibits strong amplitude oscillations even when the coupling
strength ε is small: the amplitude of the cycle—a bonafide limit-cycle—is determined
by the properties of the system, and is only very weakly affected by the strength of the
forcing. Moreover, Figs. 4.11 and 4.12 show that while the fluctuations in the phase are
not significantly smaller for the limit-cycle oscillator than for the damped oscillator, the
relative fluctuations in the amplitude (compared to the mean) are much smaller for the
limit-cycle oscillator, due to the non-linearity of the confining potential.

= 0.1 = 1 = 5= 0.01

Figure 4.13: The mutual information I (x; t ) in the Stuart-Landau model as a function of ν =
(ω2 −ω2

0)/(2ω), for different input-noise strengths σ2
s . It is seen that the mutual information is

maximized at ν= 0 (corresponding toω0 =ω) for all input noise levels. β= 1.0ω; ε= 0.5ω; α= 3ω.

OPTIMAL INTRINSIC FREQUENCY

Fig. 4.6B shows that the optimal intrinsic frequency ωopt
0 that maximizes the mutual in-

formation I (p; t ) for the coupled-hexamer model (CHM) depends, albeit very weakly, on
the input-noise strengthσ2

s . Here we wondered whether the Stuart-Landau model could
reproduce this feature. Fig. 4.13 shows the result. The figure shows the mutual informa-
tion I (x; t ) as a function of ν= (ω2−ω2

0)/(2ω) for different values of σ2
s . It is seen that the

dependence of I (x; t ) on ν is rather weak, yielding a broad maximum that peaks at ν= 0
(corresponding toω0 =ω) for all noise strengths. This suggests that the optimalωopt

0 <ω
observed for low input noise in the CHM arises from a stronger non-linearity in that
system than captured by the Stuart-Landau model, which describes weakly non-linear
oscillators.



5
THEORY OF CIRCADIAN

METABOLISM

ABSTRACT

Many organisms repartition their proteome in a circadian fashion in response to the
daily nutrient changes in their environment. A striking example is provided by cyanobac-
teria, which perform photosynthesis during the day to fix carbon. These organisms not
only face the challenge of rewiring their proteome every 12 hours, but also the necessity
of storing the fixed carbon in the form of glycogen to fuel processes during the night. In
this manuscript, we extend the framework developed by Hwa and coworkers (Scott et al.,
Science 330, 1099 (2010)) for quantifying the relatinship between growth and proteome
composition to circadian metabolism. We then apply this framework to investigate the
circadian metabolism of the cyanobacterium Cyanothece, which not only fixes carbon
during the day, but also nitrogen during the night, storing it in the polymer cyanophycin.
Our analysis reveals that the need to store carbon and nitrogen tends to generate an
extreme growth strategy, in which the cells predominantly grow during the day, as ob-
served experimentally. This strategy maximizes the growth rate over 24 hours, and can
be quantitatively understood by the bacterial growth laws. Our analysis also shows that
the slow relaxation of the proteome, arising from the slow growth rate, puts a severe con-
straint on implementing this optimal strategy. Yet, the capacity to estimate the time of
the day, enabled by the circadian clock, makes it possible to anticipate the daily changes
in the environment and mount a response ahead of time. This significantly enhances the
growth rate by counteracting the detrimental effects of the slow proteome relaxation.

5.1. INTRODUCTION

Bacterial cells alter gene expression in response to nutrient changes in their environment
[40, 41, 44, 45, 105]. In recent years, experiments have demonstrated that the relation
between the proteome composition and the growth rate can be quantitatively described
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by growth laws, which are based on the idea that cells need to balance the supply of
amino-acids via catabolic and anabolic reactions with the demand for amino-acids in
the synthesis of proteins by ribosomes [40, 41, 44, 45, 105]. While in the original studies
this relationship was tested for conditions that do not vary on the timescale of the cel-
lular response [40, 41, 105], more recently it has been demonstrated that these growth
laws can also describe the transient relaxation dynamics of the proteome in response to
a nutrient shift [44, 45]. Here, we extend this framework to predict how bacterial cells
repartition their proteome in response to periodic, circadian environmental changes.

Many organisms, ranging from cyanobacteria, to plants, insects, and mammals, pos-
sess a circadian clock, which means that they can anticipate daily changes in their envi-
ronment, and adjust their proteome ahead of time. Moreover, many organisms face the
challenge that they can fix carbon and/or nitrogen only during one part of the day, which
means that they then need to store these resources to fuel processes the other part of the
day. In this manuscript, we study by mathematical modeling the optimal strategy for al-
locating cellular resources that maximizes the growth rate of cyanobacterial cells living
in a periodic environment. We show that storing carbon and nitrogen puts a fundamen-
tal constraint on the growth rate, and tends to generate extreme growth behavior, where
cells predominantly grow in one part of the day. Moreover, we show that in cyanobac-
teria with cell-doubling times that are typically longer than 10h [27, 106, 107], the slow
relaxation of the proteome severely limits the growth rate, but that anticipation makes it
possible to alleviate the detrimental effects of the slow relaxation.

Cyanobacteria are among the most studied and best characterized organisms that
exhibit circadian metabolism. Their metabolism is shaped by the constraint that not all
the principal elements can be fixed during the day and the night. For cyanobacteria, the
primary source of carbon is CO2, which they fix during the day via photosynthesis. Yet,
cyanobacteria also need carbon during the night, not only for protein synthesis, but also
for the generation of fuel molecules such as ATP, required for maintenance processes
such as DNA repair. To this end, they use not all the fixed carbon to fuel growth dur-
ing the day: they also store a fraction in the form of glycogen, which then becomes the
principal source of carbon during the night.

Like all living cells, cyanobacteria not only need carbon, but also nitrogen. Some
cyanobacteria, such as Synechococcus and Synechocystis, rely on nitrogen that has been
fixed by other organisms in the form of, e.g., nitrate. Other cyanobacteria, such as Cyan-
othece [108] and Anabaena [109, 110], have, however, the ability to fix the nitrogen that is
available in the form of the most abundant gas in the atmosphere, N2. Yet, this process
requires an enzyme, nitrogenase, which cannot tolerate O2. Since O2 is produced dur-
ing photosynthesis, cyanobacterial cells cannot simultaneously fix carbon and nitrogen
during the day. Anabaena has solved this problem at the population level, where some
cells fix carbon while others fix nitrogen [110]. Cyanothece has solved the problem at
the single-cell level by temporally separating these processes [108]. In this manuscript,
we will use Cyanothece as a model organism to study the design principles of circadian
metabolism.

During the day Cyanothece stores carbon in the form of glycogen, while during the
night it fixes nitrogen and stores it in the form of cyanophycin [111]. Like glycogen,
cyanophycin is a large polymer that accumulates in the cytoplasm in the form of in-
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soluble granules. The polymer is a large polypeptide and consists of two amino-acids:
aspartic acid, which forms the back bone, and arginine, which constitutes the side group.
Arginine is the amino acid with the largest number of nitrogen atoms in its side chain,
namely 3; indeed, its side chain has the largest ratio of nitrogen (N) to carbon (C) atoms:
3:4. Cyanophycin is thus exceedingly rich in nitrogen, having an N:C ratio of about
1:2, which is about an order of magnitude larger than that in typical proteins. While
cyanophycin may serve as a carbon-storage compound, its principal role is therefore
believed to serve as a nitrogen reservoir.

Under LD conditions, Cyanothece fix nitrogen in the dark, as measured by the nitro-
genase activity, and store glycogen during the day [111]. Also in continuous light [111]
or continuous dark conditions [112], the nitrogenase activity and cyanophycin storage
peak during the subjective night while glycogen storage peaks during the subjective day,
indicating the presence of a circadian clock that coordinates these activities. Interest-
ingly, under LD conditions, Cyanothece exclusively grows during the day [113], but in
continuous dark, when grown on glycerol [112], it still predominantly grows during the
subjective day, although Fig. 8 of Ref. [112] leaves open the possibility it may also grow
during the subjective night.

These physiological rhythms of Cyanothece are mirrored by circadian rhythms in
gene expression [114–119]. About 30% of the 5000 genes examined exhibit oscillating
expression profiles [114]. Moreover, these genes are primarily involved in core metabolic
processes, such as photosynthesis, respiration, energy metabolism, and amino-acid biosyn-
thesis [114]; in contrast, most genes involved in transport, DNA replication and repair,
were not differentially expressed [114]. Importantly, genes associated with nitrogen fix-
ation are primarily expressed in the dark, while those underlying photosynthesis are
up-regulated during the light and down-regulated during the dark period [114]. Pro-
teomic analysis using partial metabolic heavy isotope labelling identified 721 proteins
with changing levels of isotope incorporation [117], of which 425 proteins matched the
previously identified cycling transcripts [114]. In particular, the nitrogen fixation pro-
teins were most abundant during the dark [117] while many proteins involved in photo-
synthesis are present in higher abundance during the light. Interestingly, proteins in-
volved in storing glycogen, such as the glycogen synthase, peak during the light, while
enzymes involved in glycogen metabolism, such as glycogen phosphorylase, GlgP1, have
higher levels during the dark [114]. Conversely, the cyanophycin processing enzyme
cyanophycinase, CphB, which breaks down cyanophycin into arginine and aspartic acid,
shows higher synthesis in the light [117], although, perhaps surprisingly, cyanophycin
synthetase, dCphA, appears not to be strongly coupled with the light-dark cycle.

These transcriptomic and proteomic analyses [114–117, 119], together with large-
scale computational modeling of the metabolic network [120], provide detailed infor-
mation about the proteome repartitioning dynamics during the 24 h period. Yet, many
questions remain open: First and foremost, why do cyanobacterial cells typically exclu-
sively grow during the day? Cyanobacterial cells have the components to grow at night,
which suggests that the strategy to not grow during the dark arises from a cellular trade-
off that maximizes the growth rate over 24h [120]. Can this trade-off be quantified, and
do cellular growth laws predict that it is optimal to not grow at all during the night? Sec-
ondly, in the absence of active protein degradation, the timescale for the relaxation of
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the proteome is given by the growth rate [44, 45, 121], while at the same time the growth
rate of these cyanobacterial cells is affected by how fast the proteome can adjust to the
changing light and nutrient levels (glycogen and cyanophycin). This observation is par-
ticularly pertinent, because the growth rate of these cyanobacterial cells tend to be low,
with cell-division times that are typically longer than 10 hours [27, 106, 107]. How much
is the growth rate limited by the slow relaxation of the proteome? Thirdly, cyanobacte-
rial cells have a circadian clock, which allows them to predict and anticipate the changes
in light and nutrient levels. In general, anticipation becomes potentially beneficial es-
pecially when the cellular response is slow [21]. Does anticipation allow cyanobacterial
cells to significantly raise their growth rate?

To address these questions, we employ the framework developed by Hwa and cowork-
ers for quantifying the relationship between growth and proteome composition [40, 41,
44, 45, 105] and extend it to describe circadian metabolism. This framework is inspired
by two key observations: On the one hand the response to a changing environment
tends to be extremely complex at the molecular level, involving a myriad of signaling
and metabolic pathways. On the other hand, it tends to be global, meaning that in re-
sponse to a nutrient limitation certain subsets of enzymes are upregulated while oth-
ers are downregulated. The system is therefore not described in terms of the detailed
signaling and metabolic networks, but rather via coarse-grained protein sectors. Each
sector contains a subset of enzymes, which share a common purpose, according to the
supply-and-demand picture of protein synthesis [105]. Each sector is described by a sin-
gle coarse-grained enzyme, which can be thought of as representing the average activity
of the enzymes in that sector. It is this coarse-grained description that allows for a quan-
titative mathematical analysis. The framework has been used to describe the effect of
protein overexpression [40], cAMP-mediated catabolite repression [41], growth bistabil-
ity in response to anti-biotics [42], and methionine biosynthesis [43]. And importantly
for our analysis, it has recently been extended to describe the transient relaxation dy-
namics of the proteome in response to a nutrient shift [44, 45]. While these studies have
focused on the bacterium Escherichia coli, we here employ this framework to study cir-
cadian metabolism of cyanobacteria.

The model that we present aims to describe the circadian metabolism of cyanobac-
teria like Cyanothece, which fix carbon during the day and nitrogen during the night,
although it can straightforwardly be amended to describe the metabolism of cyanobac-
teria such as Synechococcus and Synechocystis that only fix carbon. Arguably the most
minimal model to capture the interplay between carbon and nitrogen fixation is one
that consists of a ribosome sector, a carbon sector and a nitrogen sector. However, to
capture the fact that storing glycogen and cyanophycin does not directly contribute to
growth, but only indirectly, by providing carbon and nitrogen the next part of the day,
our model also contains two other protein sectors: a glycogen and a cyanophycin syn-
thesis sector. Our model therefore naturally includes two important consequences of
building a carbon and nitrogen reservoir: 1) it requires the synthesis of enzymes that do
not directly contribute to growth, and hence lower the instantaneous growth rate [40];
2) storing carbon and nitrogen atoms drains carbon and nitrogen flux away from pro-
tein synthesis. Our model further incorporates the dynamics of the carbon and nitrogen
reservoirs (glycogen and cyanophycin), the slow relaxation of the proteome in response
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to the changing nutrient levels, and the capacity to anticipate the changing nutrient lev-
els by mounting a response ahead of time.

We first use this model to study the optimal strategy that maximizes the growth rate
over 24 hours. Our analysis reveals that the need to store carbon and nitrogen tends
to generate an extreme strategy, in which cells predominantly grow during the day, as
observed experimentally [112, 113]. However, our analysis also reveals that the slow re-
laxation of the proteome, arising from the slow growth rate, puts a severe constraint on
implementing this optimal strategy. In essence, to store enough cyanophycin during the
night to fuel growth during the day, the cyanophycin-storing enzymes need to be ex-
pressed at levels that cannot be reached if the cells would only start expressing these
enzymes at night. Indeed, to implement the optimal strategy, the cells need to express
these enzymes already before the beginning of the night, when they still grow signifi-
cantly. Interestingly, recent transcriptomics and proteomics data provide evidence for
this prediction [119].

5.2. THEORY

The central ingredients of the framework of Hwa and co-workers [40, 41, 44, 45, 105] are
the coarse-grained protein sectors and the balance of fluxes between them. We describe
these elements in turn.

Protein sectors The sectors are defined experimentally by how the enzyme expres-
sion levels vary with the growth rate in response to different types of nutrient limita-
tion [105]. The C-sector is defined as the subset of enzymes whose expression levels in-
crease as the growth rate decreases upon a Carbon limitation, yet decrease as the growth
rate decreases upon a nitrogen limitation or translation inhibition [105]. A mass-spec
analysis of E. coli revealed that this sector contains enzymes involved in ion-transport,
the TCA- cycle and locomotion [105]. The A-sector is defined as the group of proteins
that are up-regulated in response an A-limitation—a nitrogen limitation— yet down-
regulated in response to carbon or translation limitation. In E. coli, this sector consists
of enzymes that are involved in the incorporation of nitrogen into amino-acids [105].
The R-sector contains the ribosomes, which increase in abundance as the growth rate
decreases upon the addition of a translation inhibitor. The study of Hui and co-workers
on E. coli also identified an S-sector, consisting of enzymes whose expression levels in-
crease in response to both carbon and nitrogen limitation, and a U-sector, consisting of
proteins that are un-induced under any of the applied limitations [105].

In our model, we are interested in the interplay between carbon and nitrogen assim-
ilation, and the simplest model that can capture this interplay is one that considers an
R-sector, a C-sector and an A-sector. The mass fractions of the proteins in these sectors
are denoted by φR, φC and φA, respectively. Our model does not explicitly contain an S-
and a U-sector, although we emphasize that as experimental data becomes available the
model can straightforwardly be extended to include these sectors [105]. Following Hui
et al., we also stress that these sectors are ultimately defined experimentally [105]. In
our case, the C-sector is defined as consisting of those enzymes that are up-regulated in
response to a carbon limitation, yet down-regulated in response to an A- or R-limitation.
The carbon limitation can be in the form of reduced CO2 and light levels during the day,
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but also reduced glycogen levels during the night. Our model thus lumps all proteins that
are involved in providing carbon skeletons for amino-acid synthesis into one sector, the
C-sector. We anticipate that this sector contains enzymes of not only the photosynthesis
machinery, but also the TCA cycle, as well as enzymes involved in degrading glycogen,
such as glycogen phosphorylase GlgP. Experiments need to establish whether it would be
necessary to split this C-sector up into separate sectors for, e.g., photosynthesis, glyco-
gen breakdown and downstream carbon processing (e.g. TCA cycle).

Similarly, we define the A-sector as the set of enzymes that are up-regulated in re-
sponse to nitrogen limitation, yet down-regulated in response to a C- or R-limitation. We
envision that nitrogen limitation can be imposed by reducing N2 levels, by employing a
titratable nitrogen uptake system [105], or by lowering levels of cyanophycin. While,
again, experiments need to identify which enzymes belong to this sector, we expect that
it contains not only the nitrogenase enzymes that reduce N2 into ammonia and the en-
zymes that subsequently incorporate the nitrogen into amino-acids, but also the pro-
teins that are involved in the breakdown of cyanophycin, such as cyanophycinase CphB.

Following Scott et al., the model also includes an unresponse fraction φQ, although
this parameter will be absorbed in the maximal ribosomal fraction φR,max, as described
below [40, 41, 105].

Storing fractions While this model is indeed highly coarse-grained, we do consider
two other sectors, which contain enzymes that store glycogen during the day and nitro-
gen during the night. Their fractions are denoted by φSC and φSA, respectively. Enzymes
belonging to φSC are glycogenin and glycogen synthase, which are indeed up-regulated
during the day [116, 117]. Cyanophycin is synthesized from arginine and aspartate by
a single enzyme, cyanophycin synthetase, CphA, which thus forms the φSA sector [116].
A key point is that expressing the glycogen-storing enzymes slows down growth during
the day yet enables growth during the night, while expressing cyanophycin synthetase
slows down growth during the night, yet enables growth during the day. Even though the
growth laws are linear, this creates a feedback between growth at night and during the
day that yields a non-linear response, as we discuss in more detail below.

Steady-state flux balance The experiments by Hwa and coworkers on E. coli have
revealed that the steady-state growth rate varies linearly with the size of the protein sec-
tors [40, 41, 105]. These linear relationships can be understood by combining the fol-
lowing ideas: a) in steady-state the fluxes Jα through the different sectors α= R,C,A are
balanced, so that there is no build-up of intermediates like amino-acids; b) the growth
rate λ is proportional to the flux through the sectors; c) the flux through a sector scales
linearly with the size of the sector. Combining these ideas makes it possible to quanti-
tatively describe the experiments of [41, 105], explaining how each sector is upregulated
in response to one type of limitation, while downregulated in response to another type
of limitation [41, 105]. Moreover, the model can quantitatively describe how the growth
rate decreases as an unnecessary protein, which does not directly contribute to growth,
is expressed via an artificial inducer [40]. The latter is important, because the proteins
that store glycogen and cyanophycin, respectively, can be thought of as proteins that
do not directly contribute to growth; they only contribute by providing the carbon- and
nitrogen sources for the next part of the day. Our model incorporates these three ingre-
dients a)-c), but adds a fourth, d): a certain fraction of the flux through the carbon and
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nitrogen sector is reserved for storing glycogen during the day and cyanophycin during
the night, respectively.

While our full model is time dependent, we will first consider a simpler model in
which we can directly use the growth laws derived by Hwa and coworkers [40, 41, 105].
Specifically, during the day the principal source of carbon is CO2, while that of nitrogen is
cyanophycin, which decreases with time. During the night, the principal source of nitro-
gen is N2, while that of carbon is glycogen, which falls with time. As a result, the growth
rate λwill, in general, be time-dependent, λ=λ(t ). Moreover, because the glycogen and
cyanophycin concentrations vary with time, the proteome fractions, which are adjusted
in accordance with the nutrient availability, will change not only upon the shift from day
to night, but also continue to change throughout the day and night. As was pointed out
in [121] and also in [44, 45], in the absence of active protein degradation, the proteome
relaxes with a timescale that is set by the growth rate λ(t ). This means that when the
growth rate is low, the proteome will relax slowly, and may not be in quasi-equilibrium
with respect to the instantaneous levels of glycogen during the night and cyanophycin
during the day. Below we will take this slow relaxation of the proteome into account.
However, to introduce the main elements of the model, it will be instructive to first as-
sume that the growth rate is so high, that the proteome is always in quasi-equilbrium
with respect to the instantaneous nutrient levels, set by the CO2/light and cyanophycin
levels during the day, and the glycogen and N2 levels during the night. The growth thus
depends on time, but not explicitly, and only implicitly via the levels of glycogen and
cyanophycin: λ(t ) = λ([C](t ), [N](t )), where [C](t ) and [N](t ) are the time-dependent
carbon and nitrogen sources. We call this model the quasi-equilibrium model.

The first two ingredients a) and b) imply that in the quasi-equilibrium model

λβ(t ) = cR JR(t ) = cC JβC(t ) = cA JβA (t ), (5.1)

where cα are the stochiometric requirements for cell growth [105]. Here, we have added
the superscriptβ= L,D, with L standing for light and D for dark, to remind ourselves that
the fluxes through the carbon and nitrogen sector and thereby the growth rate, depend
on the source of carbon and nitrogen used, which differs between day and night.

The third observation c) means that for the ribosomal sector

λL/D(t ) = cR JR(t ) = νR(φR(t )−φR,0). (5.2)

Here, νR = cRkR, where kR describes the translation efficiency, which can be varied ex-
perimentally using a translation inhibitor such as cloramphenicol [40, 41, 105]. The
quantity φR,0 is the fraction of ribosomes that is not active in steady-state, yet can be-
come active during the transition from one environment to the next [44, 45]. In the
quasi-equilibrium model considered here, it is a constant, independent of time.

The ingredients c) and d) imply that the flux through the carbon sector that flows
into the other sectors is given by

λβ(t ) = cC JβC(t ) = νβC(t )(φC(t )−φC,0)−L(t )νSCφSC(t ). (5.3)

Here, L(t ) is an indicator function that is 1 during the day and 0 during the night. Indeed,
during the day both terms are present. The first term on the right-hand side describes the
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carbon flux that would flow into the other sectors if no carbon were stored into glycogen
during the day. The second term indeed describes the flux that is not used for growth
during the day, but rather lost in storing glycogen. During the night, no glycogen is stored

and the second term is absent. In the first term, νβC is a measure for the efficiency of the
carbon sector. It depends on the quality and the amount of nutrient [41, 105], but can
also be varied experimentally—in E. coli by titrating a key enzyme such as the lactose

permease [41, 105]. In our model, νβC depends on the part of the day, as indicated by
β= L,D: during the day, the principal carbon source is CO2, which means that the value
of νL

C will depend on the concentration of CO2 and light levels. Since we will model

the light intensity as a step function, during the day the light level and hence νL
C(t ) is

constant, and equal to νL
C(t ) = ν̃L

C. In contrast, during the night, the principal source of
carbon is glycogen, which decreases during the night. This affects the carbon-processing
efficiency. We will model this as

νD
C (t ) = ν̃D

C
[C](t )

[C](t )+KC
, (5.4)

where [C](t ) is the time-dependent concentration of glycogen and KC is the glycogen
concentration at which the enzyme efficiency is reduced by a factor of 2. The quantity ν̃D

C
is the maximal efficiency of the carbon-sector with glycogen as the carbon source; it does
not depend on time. The quantityφC,0 is the fraction of carbon-processing enzymes that
is not used for growth. For E. coli it is very close to zero, and from here on we assume it to
be zero. The quantity νSC describes the efficiency of the glycogen-storing enzymes, and
is taken to be constant.

For the nitrogen-sector, we similarly obtain

λβ(t ) = cA JβA (t )

= νβA(t )(φA(t )−φA,0)− (1−L(t ))νSAφSA(t ), (5.5)

where in the calculations performed here we assume that φA,0 is zero, even though the
experiments indicate that for E. coli the unused fraction in the A-sector is about 10%
[105]. The nitrogen-processing efficiency during the day depends on the concentration
of stored cyanophycin, [N], via

νL
A(t ) = ν̃L

A
[N](t )

[N](t )+KA
. (5.6)

The nitrogen-uptake efficiency during the night depends on the amount of N2, which we
assume to be constant throughout the night. The efficiency is thus given by νD

A = ν̃D
A .

Combining all four ingredients a) - d), i.e. Eqs. 5.1-5.6, yields

λβ(t ) = νR(φR(t )−φR,0) (5.7)

= νβC(t )φC(t )−L(t )νSCφSC(t ) (5.8)

= νβA(t )φA − (1−L(t ))νSAφSA(t ). (5.9)
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Proteome balance The protein sectors obey at all times t the constraint

φR(t )+φC(t )+φA(t )+φSC(t )+φSA(t )+φQ = 1. (5.10)

The growth rate λ will be maximal, λ→ λmax, when the storing, carbon- and nitrogen-
processing fractions approach zero, and the ribosomal fraction becomes maximal

lim
λ→λmax

φR ≡φR,max = 1−φQ, (5.11)

allowing us to rewrite the constraint as:

φR(t )+φC(t )+φA(t )+φSC(t )+φSA(t ) =φR,max. (5.12)

We note that this definition of φR,max differs slightly from φmax defined in Ref. [41, 105].
Growth rate in quasi-equilibrium model In our model, the input parameters are

ν
β
α and φR,0, while the storing fractions φSC(t ) and φSA(t ) are control parameters over

which we will optimize to maximize the growth rate over a 24h period. In the quasi-
equilibrium model, the optimal φSC during the night is zero and the optimal φSA during
the day is zero. In this model, we thus have one optimization parameter φSC for the day,
and another for the night,φSA. In this quasi-equilibrium model, the other protein sectors
relax instantaneously, to values that, for the day, are determined by the efficiencies νR,
νL

C, the instantaneous efficiency νD
A (t ) and the optimization parameter φSC(t ), and, for

the night to values given by νR, νD
A , the instantaneous value of νL

A(t ) and the optimization
parameter φSA(t ). The 4 equations, Eqs. 5.7-5.9 together with the constraint Eq. 5.12,
thus contain 4 unknowns φR,φC,φA,λ, which can be solved to obtain the instantaneous
growth rate for the day and night, respectively, for the quasi-equilibrium model:

λL(t ) = νRν
L
Cν

L
A(t )

νRν
L
C +νRν

L
A(t )+νL

A(t )νC
×

(φR,max −φR,0 − (1+νSC/νL
C)φSC(t )) (5.13)

λD(t ) = νRν
D
C (t )νD

A

νRν
D
C (t )+νRν

D
A +νD

Aν
D
C (t )

×

(φR,max −φR,0 − (1+νSA/νD
A )φSA(t )) (5.14)

Clearly, during the day the growth rate, for given CO2 and cyanophycin levels, is maximal
when no glycogen is stored andφSC = 0. This defines a maximum growth rate during the
day

λL
max([N](t )) = νRν

L
Cν

L
A(t )

νRν
L
C +νRν

L
A(t )+νL

A(t )νL
C

∆φR,max, (5.15)

where ∆φR,max =φR,max −φR,0. The maximal growth rate depends on the instantaneous
amount of cyanophycin, [N](t ), because νL

A(t ) depends on [N](t ) (see Eq. 5.6). From
Eq. 5.13 we find the storing fraction φ0

SC that reduces the growth rate to zero during the
day:

φ0
SC = ∆φR,max

1+νSC/νL
C

. (5.16)



5

126 5. THEORY OF CIRCADIAN METABOLISM

This allows us to rewrite Eq. 5.13 as

λL(φSC) =λL
max([N](t ))

(
1−φSC/φ0

SC

)
. (5.17)

Equivalently, we find for the growth rate during the night

λD(φSA) =λD
max([C](t ))

(
1−φSA/φ0

SA

)
, (5.18)

with

λD
max =

νRν
D
C (t )νD

A

νRν
D
C (t )+νRν

D
A +νD

Aν
D
C (t )

∆φR,max (5.19)

and

φ0
SA = ∆φR,max

1+νSA/νD
A

. (5.20)

A few points are worthy of note. Firstly, Eqs. 5.17 and 5.18 show that the growth rate
decreases linearly with φSC and φSA, respectively. In fact, Scott et al. derived a similar
relation for the growth rate when an unnecessary protein is expressed [40]. This high-
lights the idea that storing glycogen and cyanophycin reduces the growth rate, because
synthesizing these storage molecules requires proteins that do not directly contribute to
growth—thus taking up resources that could have been devoted to making more ribo-
somes. Indeed, building carbon and nitrogen reservoirs only pays off the next part of the
day, which can be seen by noting that the maximum growth rate during the day, λL

max,
increases with the amount of cyanophycin that has been stored the night before (via νL

A,
see Eq. 5.6), while the maximum growth rate during the night, λD

max increases with the
amount of glycogen that has been stored the day before (via νD

C , see Eq. 5.4). Clearly, the
cell needs to strike a balance between maximizing the instantaneous growth rate and
storing enough resources to fuel growth the next part of the day.

However, there is also another effect: building the reservoirs reduces the growth rate
not only because it requires proteins that do not directly contribute to growth, but also
because it drains carbon and nitrogen flux. This manifests itself in the interceptsφ0

SC and
φ0

SA at which the growth rate is zero (see Eq. 5.16). This effect puts a hard fundamental
bound on the maximum rate at which glycogen and cyanophycin can be stored. For
glycogen the maximum storing rate is given by

vmax
store,G = cGνSCφ

0
SC (5.21)

= cG
νSCν

L
C

νSC +νL
C

∆φR,max. (5.22)

Here, cG is a stoichiometric coefficient that reflects the number of carbon atoms that
are stored in a glycogen molecule. This expression shows that the maximal storing rate
vmax

store,G increases with ∆φR,max. This is because ∆φR,max limits the fraction of the pro-

teome that can be allocated to storing glycogen, φ0
SC. The expression also reveals that

vmax
store,G depends on νSC and νL

C. The maximum storing rate vmax
store,G initially increases
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with νSC, simply because that increases the rate at which the glycogen storing enzymes
operate. However, the increased flux of carbon into glycogen also means that less carbon
is available for making the glycogen-storing enzymes themselves. As a result, as νSC in-
creases, the maximal fraction φ0

SC of glycogen-storing enzymes decreases (see Eq. 5.16).
In the limit that νSC becomes very large, i.e. much larger than νC, thenφ0

SC becomes zero,
and the rate at which glycogen is stored becomes independent of νSC. In this regime,
all the carbon flows into glycogen and the storing rate instead becomes limited by νL

C,

vmax
storage,G = cGν

L
C∆φR,max. In this limit, φR = φA = 0 and φC = ∆φR,max, such that there is

no carbon flow devoted to growth, νL
CφC−νSCφSC = 0 (Eq. 5.3), but only to storing glyco-

gen. As we will see below, this will put a strong constraint on the maximal growth rate of
the cyanobacteria.

Reservoir dynamics The growth rate depends on the efficiencies νD
C (t ) and νL

A(t ),
which depend on the amount of glycogen and cyanophycin, respectively (see Eqs. 5.4 and 5.6).
The dynamics of their concentration is given by

d [N](t )

d t
= (1−L(t ))cCPνSAφSA(t )−L(t )cCPλ(t )−λ(t )[N](t ) (5.23)

d [C](t )

[d t ]
= L(t )cGνSCφSC(t )− (1−L(t ))cGλ(t )−λ(t )[C](t ) (5.24)

The last term in both equations is a dilution term, where we have exploited that cells
grow exponentially with rate λ(t ). The first term describes the accumulation of the
stores due to the storing enzymes, with cCP,cG being stoichiometric coefficients that
reflect how many nitrogen and carbon atoms are stored in a cyanophycin and glyco-
gen molecule, respectively. The second term describes the consumption of cyanophycin
and glycogen that fuels growth. Focusing on glycogen, this term can be understood by
noting that the depletion of glycogen during the night is given by the rate at which the
carbon sector consumes glycogen:

d [C](t )

d t
= (1−L(t ))cGν̃

D
C

[C](t )

[C](t )+KC
φC(t ) (5.25)

= (1−L(t ))cGλ(t ) (5.26)

where in the second line we have exploited that in quasi-equilibrium the growth rate
λ(t ) is given by the flux through the carbon sector (see Eqs. 5.3 and 5.4). Importantly,
this expression reveals that the depletion of the store depends on the growth rate not
only because that sets the dilution rate (reflected by the third term in Eqs. 5.23 and 5.24),
but also because the growth rate sets the rate at which the store is consumed (second
term).

Slow proteome dynamics The proteome will in general not be in quasi-equilibrium
with respect to the instantaneous nutrient levels. To take into account the relaxation of
the proteome we first define the mass fractions φα of the different sectors

φα = Mα

M
(5.27)

where Mα is the protein mass of sector α= R,C,A,SC,SA,Q and M is the total mass. The
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total rate at which proteins are synthesized is given by

d M(t )

d t
=σ(t )MR(t ), (5.28)

where MR is the mass of the ribosomal sector, consisting of the mass of the ribosomes
and the ribosome-affiliated proteins [45]. The quantity σ(t ) is the instantaneous trans-
lational efficiency. It corresponds to the average translational efficiency, and does not
distinguish between active and inactive ribosomes [45]. When we divide the above equa-
tion by M(t ), we obtain the instantaneous growth rate [45, 121]

λ(t ) = 1

M(t )

d M(t )

d t
=σ(t )φR (t ). (5.29)

To obtain the evolution of the different protein sectors, we denote the fraction of the
number of ribosomes that are allocated to making protein sector α as χα. The evolution
of the proteome mass Mα is then

d Mα(t )

d t
=χα(t )σ(t )MR (5.30)

and that of the proteome fraction [45, 121]

dφα(t )

d t
= 1

M(t )

d Mα(t )

d t
− Mα(t )

M 2(t )

d M(t )

d t
(5.31)

= 1

M(t )
χα(t )σ(t )MR −φα(t )λ(t ) (5.32)

=χα(t )σ(t )φR(t )−φα(t )λ(t ) (5.33)

=λ(t )(χα(t )−φα(t )), (5.34)

where in going to the last line we have exploited Eq. 5.29. This equation shows that when
χα(t ) adjusts rapidly to a new nutrient environment, as recent experiments indicate [44,
45], the relaxation of the proteome is dominated by the growth rate λ(t ). Importantly,
the equation also shows that when χα(t ) = φα(t ), the proteome has equilibrated: the
fractions no longer change with time.

Recent experiments indicate that after a nutrient upshift the translational efficiency
σ(t ) and the fraction χα(t ) of ribosomes devoted to making proteins of sector α rapidly
approach their new steady-state values as set by the new environment [44, 45]. We there-
fore make the simplification [121], also used in [45], that after a day-night (and night-
day) transition σ(t ) immediately takes the final value σ∗ set by the new environment
and that χα(t ) immediately takes the value of the final fraction φ∗

α in the new environ-
ment. However, in our system, the amounts of glycogen and cyanophycin change with
time, and the proteome fractions continually adjust to this. The “final” fractions φ∗

α are
thus target fractions that themselves change with time, and similarly for the translation
efficiency σ:

χα(t ) =φ∗
α([C](t ), [N](t )) (5.35)

σ(t ) =σ∗([C](t ), [N](t )). (5.36)
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These quantities are set such that if φα(t ) were equal to χα(t ) = φ∗
α([C](t ), [N](t )) and

σ(t ) were equal to σ∗([C](t ), [N](t )), the fluxes through the different sectors would be
balanced and the growth rate would be equal to λ∗(t ):

λ∗(t ) =σ∗(t )φ∗
R(t ) = νR (φ∗

R(t )−φR,0) (5.37)

= νβC([C](t ))φ∗
C(t )−L(t )νSCφ

∗
SC(t ) (5.38)

= νβA([N](t ))φ∗
A(t )− (1−L(t ))νSAφ

∗
SA(t ) (5.39)

Importantly, we do not only need to consider the target fractions for the R-, C-, A-, and
Q-sector, but also for the storing fractions: χSC(t ) =φ∗

SC(t ) and χSA(t ) =φ∗
SA(t ). Eqs. 5.37-

5.39 are thus solved subject to the following constraint

φ∗
R(t )+φ∗

C(t )+φ∗
A(t )+φ∗

SC(t )+φ∗
SA(t ) =φR,max, (5.40)

where φSC(t ) and φSA(t ) are optimization parameters described in more detail below.
This equation states that the total ribosome protein synthesis fraction

∑
αχα(t ) = 1 at all

times, which guarantees that
∑
αφα(t ) = 1 at all times.

Anticipation The cell needs to repartition its proteome every 12h as the cells move
from day to night, and vice versa. Moreover, the cell needs to continually adjust its pro-
teome to the changing levels of cyanophycin and glycogen. However, the relaxation
of the proteome is, in the absence of protein degradation, set by the growth rate (see
Eq. 5.34), which for cyanobacteria, with cell division times in the range of 10 - 70h, is low
compared to the 24 hr period of the day-night cycle. This slow relaxation of the proteome
will tend to make the growth rate suboptimal. Interestingly, cyanobacteria, ranging from
Synechococcus, Synechocystis, to Cyanothece have a circadian clock, which allows them
to anticipate the changes between day and night and to adjust their proteome ahead of
time.

To include this into the model, we introduce the notion of the anticipation time Ta.
That is, the cells will compute the target protein fraction φ∗

α(t ) at time t (see Eqs. 5.37-

5.39) based on the values of νβα(t +Ta) at the later time t +Ta. The ribosome fraction
χα(t ) =φ∗

α(t ) devoted to making proteins of sector α at time t is thus determined by the

protein efficiencies νβα(t +Ta) at a later time t +Ta. This allows cells to already adjust
their proteome before the end of the day (night) is over, and steer it towards the target

protein fractions set by the efficiencies νβα(t +T ) in the following night (day).

There is one subtlety, which we address in a rather ad-hoc fashion. The efficiencies
νL

A(t ) = ν̃L
A[N](t )/([N](t )+KA) and νD

C (t ) = ν̃D
C [C](t )/(cC (t )+KC) depend on the concen-

trations of cyanophycin and glycogen at time t , respectively. Experiments on plant cells
in combination with modeling [122] suggest that cells might be able to extrapolate the
current concentrations [C](t ) and [N](t ) to estimate the concentrations at time t +T ,
[C](t +T ) and [N](t +T ), respectively. While this could be included into our model, we
make the simplication that the cells base the future efficiency based on the current con-
centration of the store.

The target fractions φ∗
α(t ) are thus obtained by solving Eqs. 5.37-5.39 but with the



5

130 5. THEORY OF CIRCADIAN METABOLISM

protein efficiencies given by

ν
β

C(t ) → L(t +Ta)ν̃L
C + (1−L(t +Ta))ν̃D

C
[C](t )

[C](t )+KC
(5.41)

ν
β

A(t ) → L(t +Ta)ν̃D
A

[N](t )

[N](t )+KA
+ (1−L(t +Ta))ν̃L

A, (5.42)

where, as before, L(t ) is an indicator function that is 1 during the day and 0 during the
night.

In addition, in this anticipation model, we also take into account that the protein
storing fractions φSC and φSA can be made ahead of time: the synthesis of the glycogen-
storing enzymes can already start before the beginning of the day, while the production
of the cyanophycin-storing enzyme can already start before the beginning of the night.
As we will see, especially the latter can significantly enhance the growth rate. Impor-
tantly, while the storing enzymes are synthesized ahead of time, we assume that they
become active only when they need to be, i.e. the cyanophycin-storing enzymes are ac-
tive only during the night, while those storing glycogen are only active during the day.

Overview full model The model that takes into account the slow proteome relax-
ation dynamics but not anticipation, is given by Eq. 5.29 which gives the instantaneous
growth rate λ(t ), Eq. 5.34 that describes the evolution ofφα(t ), and Eqs. 5.35-5.40, which
are solved to yield χα(t ) =φ∗

α(t ) in Eq. 5.34 andσ(t ) =σ∗(t ) in Eq. 5.29, together with the
dynamics for the concentrations of cyanophycin and glycogen, Eqs. 5.23 and 5.24. More-
over, in this so-called slow-proteome model, we set φSC to be zero during the night and
φSA to be zero during the day, and optimize over the magnitude of their values during
the day and night, respectively.

The full model, called the anticipation model, is based on the idea that the cell pos-
sesses a clock that not only makes it possible to anticipate the changes in protein effi-

ciencies νβα(t ) between day and night, but also to express the protein storing fractions in
an anticipatory fashion. The full model is thus exactly the same as the slow-proteome

model, except for the following two ingredients: 1) the efficiencies νβC(t ) and ν
β

A(t ) in
Eqs. 5.37-5.38 are replaced by those of Eqs. 5.41 and 5.42; 2) the protein-storing fractions
φSC(t ) and φSA(t ) are optimized not only with respect to their magnitude, but also with
respect to the timing of their expression.

5.3. PARAMETER SETTINGS

In our model, the key parameters that can be varied experimentally are νL
C, which is de-

termined by the CO2 and light levels during the day, νD
A , which is set by the N2 level,

and νR, which can be varied experimentally via a translational inhibitor such as chlo-
ramphenicol. The parameters νD

C and νL
A are set by the nutrient quality of glycogen and

cyanophycin, respectively, while νSC and νSA are determined by the efficiencies of the
glycogen and cyanophycin storing enzymes, respectively. We will keep these parameters
constant in all the results that we present below. The parameters are set such that for
the baseline parameter values the average cell-division time is roughly 24h. The values
of φR,max and φR,0 are inspired by those measured for E. coli [105]. The parameters φSC

andφSA are optimization parameters, as described above. We optimize these parameters
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by numerically propagating our model for given values of φSC and φSA and numerically
computing the average growth rate 〈λ〉T = 1/T

∫ T
0 λ(t ) over one period of duration T ,

which under normal conditions is T = 24h.

5.4. RESULTS

5.4.1. QUASI-EQUILIBRIUM MODEL

It is instructive to first consider the scenario in which the relaxation of the proteome
is instantaneous, such that at any moment in time the protein fractions are optimally

balanced based on the values of the protein efficiencies νβC and νβA and the instantaneous
levels of glycogen, [C](t ), and cyanophycin, [N](t ), respectively. Fig. 5.1A shows a heat
map of the average growth rate over 24h, 〈λ〉24 as a function of the fractions of proteins
that store glycogen and cyanophycin, φSC and φSA, respectively. The parameters have
been set such that the system is symmetric, νSC = νSA, νL

C = νD
A , KC = KA, cG = cCP, except

that the maximum growth rate during the day is slightly larger than that during the night
because ν̃L

A = 6/h is slightly larger than ν̃D
C = 2/h. The prominent feature of the figure

is that even though the system is slightly asymmetric, meaning that the system could
grow during the dark, the storing fractions that maximize the growth rate are such that
the optimal cyanophycin-storing protein fraction φ

opt
SA is markedly non-zero, while the

optimal glycogen-storing protein fraction, φopt
SC , is essentially zero.
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Figure 5.1: Optimal growth strategy in the quasi-equilibrium model. In this model, the proteome
fractions relax instantaneously and as such are always in quasi-equilibrium with the instantaneous
levels of glycogen, [C](t ), and cyanophycin, [N](t ). In this model, the instantaneous growth rate
is given by Eqs. 5.13 and 5.14 (or equivalently Eqs. 5.17 and 5.18), while the reservoir dynamics
is given by Eqs. 5.23 and 5.24. The model is nearly symmetric between day and night, ν̃L

C = ν̃D
A ,

νSC = νSA, cG = cCP, KC = KA, except that νL
A = 3/h is slightly larger than νD

C = 1/h. (A) Heat
map of the average growth rate over 24h, 〈λ〉24, as a function of φSC and φSA. The heatmap is
obtained by numerically propagating Eqs. 5.23 and 5.24, with λ(t ) given by Eqs. 5.13 and 5.14, for
different values of φSC and φSA; the average growth rate is obtained by numerically evaluating
〈λ〉24 = 1/24

∫ 24
0 λ(t ). It is seen that there exists a combination of storing fractions that maximizes

the growth rate, φ
opt
SC and φ

opt
SA ; moreover, φ

opt
SC is close to zero, while φ

opt
SA is close to the maximal

fraction φ0
SA at which the growth rate becomes zero, see Eq. 5.20. (B) Time traces of λ(t ) at φ

opt
SC

and φ
opt
SA , not only for KC = 5cG = KA = 5cCP, as in panel A, but also for two other values. Clearly,

the cells only grow during the day. The growth rate during the night is zero, because the storing

fraction φ
opt
SA is close to the maximal fraction φ0

SA at which the growth rate is zero. This shows
that the the optimal strategy in the quasi-equilibrium model is to store as much cyanophycin as
possible during the night, because that maximizes the growth rate during the day. The explanation
of this behavior is given in Fig. 5.2. (C) Time traces of the cyanophycin levels for different values
of KC = KA. Parameter values: νL

C = 2/h = νD
A = 2/h; ν̃D

C = 2/h; ν̃L
A = 6/h; νR = 0.2/h; νSC = νSA =

0.6/h; KC = 5cG = KA = 5cA .

To elucidate Fig. 5.1A, we show in panel B the growth rate λ(t ) of the system with the
optimal storing fractions φopt

SC and φopt
SA , for three different values of KC = KA. Strikingly,

the growth rate is zero during the night. The cells only grow during the day, even though
with these parameters the cells would have the capacity to grow during the night, had
they not to store so much cyanophycin. Indeed, the optimal storing fraction φ

opt
SA that

maximizes the growth rate is close to the fraction φ0
SA at which the growth rate becomes

zero, see Eq. 5.20.
The mechanism that underlies the optimal strategy is illustrated in Fig. 5.2. Panel A

shows the average growth rate during the day 〈λ〉L as a function of φSC for different val-
ues of φSA, while panel B of this figure shows the average growth rate during the night,
〈λ〉D, as a function of φSA for different values of φSC. First of all, note that the maximum
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growth rate during the day is only slightly larger than that during the night—the asym-
metry between day and night is indeed (chosen to be) weak. Yet, the optimal strategy,
which maximizes the average growth rate over 24h, is to not grow at all during the night.
To understand this, note that storing more cyanophycin during the night will enhance
the growth rate during the day (panel A), yet lower it during the night (panel B). Similarly,
storing more glycogen during the day will raise the growth rate during the night (right B),
yet lower it during the day (panel A). The crux is that the cost of storing less glycogen dur-
ing the day—a lower growth rate at night—decreases when more cyanophycin is stored,
while at the same time the benefit of storing more cyanophycin—growing faster during
the day—is largest when the amount of stored glycogen is minimal. This tends to favor
a strategy where the maximum amount of cyanophycin is stored during the night, while
a minimal amount of glycogen is stored during the day. Naturally, the argument also
works in the converse direction, yielding a strategy where the maximal amount of glyco-
gen is stored during the day and the minimal amount of cyanophycin is stored during the
night. Yet, because the maximal growth rate during the day is larger than the maximal
growth rate during the night, the former strategy is favoured.

Figure 5.2: Mechanism underlying the optimal strategy that maximizes the growth rate in the
quasi-equilibrium model, given by Eqs. 5.13 and 5.14 and Eqs. 5.23 and 5.24. (A) The average
growth rate during the day, 〈λ〉L as a function of φSC for different values of φSA. (B) The average
growth rate during the night, 〈λ〉D as a function of φSA for different values of φSC. These fig-
ures have been obtained by numerically propagating Eqs. 5.13 and 5.14 and Eqs. 5.23 and 5.24 for
different combinations of φSC and φSA. The key point is that the cost of storing less glycogen—
a lower growth rate at night—decreases when more cyanophycin is stored (and vanishes in fact
when φSA approaches its maximum φ0

SA where the growth rate becomes zero), while the benefit
of storing more cyanophycin—a higher growth rate during the day—increases as less glycogen is
stored during the day (because φSC is smaller). This yields an optimal strategy that maximizes
the growth rate in which the cells exclusively grow during the day. Parameter values as in Fig. 5.1:
νL

C = 2/h = νD
A = 2/h; ν̃D

C = 2/h; ν̃L
A = 6/h; νR = 0.2/h; νSC = νSA = 0.6/h; KC = 5cG = KA = 5cA .

Growth rates are in units of 1/h.

An important question is how generic this tipping-point strategy in which cells pre-
dominantly grow in one phase of the day, is. What is essential is that the maximum
growth rate during the day, λL

max (Eq. 5.15), is larger than that during the night, λD
max

(Eq. 5.19). Yet, the precise values of the efficiencies νL/D
C , νL/D

A tend to be less impor-
tant, depending on the values of νSC and νSA. If the model is fully symmetric, νSC = νSA,



5

134 5. THEORY OF CIRCADIAN METABOLISM

ν̃D
C = ν̃L

A, cCP = cG, except that νL
C > νD

A , then a tipping-point strategy is still favored, pro-

vided that νSC and νSA are not too large with respect to νL
C and νD

A , respectively. The

reason is that while increasing νL
C with respect to νD

A increases the maximum growth rate
during the day, which tends to favor growing exlucisely during the day, it also enhances
the capacity to store glycogen (as compared to that of storing cyanophycin), which tends
to favor growing at night. This effect is particularly pronounced when νSC and νSA are
large compared toνL

C andνD
A , respectively, because then the storing rates become limited

by νL
C and νD

A , rather than being determined by νSC and νSA, respectively (see discussion
below Eq. 5.22).

The panels of Fig. 5.2 also reveal that the growth rate is initially fairly constant, before
it markedly drops to zero when the storing fraction becomes equal to the maximal stor-
ing fraction, given by Eq. 5.16 forφSC (panel A) and Eq. 5.20 forφSA (panel B). The curves
deviate from the linear relationship between λ and the expression of an unused protein,
as found in Scott et al. [40]. In fact, also Eqs. 5.13 and 5.14 would predict a linear rela-
tionship between 〈λ〉L/D and φSC/φSA if νL

A(t ) and νD
C (t ) were constant in time. However,

νL
A(t ) and νD

C (t ) are not constant in time, because the cyanophycin and glycogen concen-
trations decrease with time, as can be seen for the cyanophycin concentration in panel
C of Fig. 5.1 (where φSC and hence [C] are very small). As a result of this reservoir deple-
tion, also the growth rate varies in time. Moreover, the reservor depletion also underlies
the observation that the rise in the growth rate upon decreasing φSC/φSA becomes less
pronounced for low φSC/φSA (Fig. 5.2): in this regime, the growth rate during the day
(night) is limited by the amount of cyanophycin (glycogen) during the night (day); de-
creasing φSC (φSA) only means that the reservoir is depleted more rapidly, yielding no
significant net increase in 〈λ〉L and 〈λ〉D; indeed, only by storing more can the growth
rate be enhanced further.

The central prediction of this quasi-equilibrium model is thus that the cells do not
tend to grow at night, as observed experimentally for Cyanothece [113], because that
allows it to grow so much faster during the day that the average growth rate over 24h in-
creases. However, this quasi-equilibrium model is based on the assumption that the pro-
teome relaxes instantly, while the relaxation rate, in the absence of protein degradation,
is set by the growth rate, which, with typical cell-division times of 10-70h [27, 106, 107], is
fairly low for cyanobacteria. In fact, to grow faster, the cell needs to store more, while the
maximum storing capacity is limited byφ0

SC andφ0
SA, which depend not only on∆φR,max,

but also on νL
C and νD

A , respectively, as discussed below Eqs. 5.22 and 5.22. How severe
this constraint can be, is seen in panel B of Fig. 5.1: for the lowest value of KC = KA shown,
the cell grows faster during the beginning of the day. However, because the cyanophycin
stored is then depleted more rapidly (see panel C below), the growth rate drops sharply
well before the end of the day. Here, more cyanophycin can not be stored, simply be-
causeφSA has already reached its maximum,φ0

SA. The limited capacity to store thus puts
a severe constraint on the growth rate, which limits the proteome relaxation rate. Can
the cell under these conditions implement the optimal strategy to maximize the growth
rate, as shown in Fig. 5.1 and Fig. 5.2? To address this question, we will turn in the next
section to the influence of the slow proteome dynamics.
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Figure 5.3: Dynamics of the slow-proteome model, given by Eq. 5.29 for λ(t ), Eq. 5.34 for φα(t ),
and Eqs. 5.35-5.40, which are solved to yield χα(t ) =φ∗

α(t ) in Eq. 5.34 and σ(t ) =σ∗(t ) in Eq. 5.29,
together with Eqs. 5.23 and 5.24 for the reservoir dynamics. Time traces of the growth rate λ(t )
(1/h, top row), glycogen levels [C](t ) and cyanophycin levels [N](t ) (second row), protein frac-
tions φR(t ),φC(t ),φA(t ) (third row), their target fractions φ∗

R(t ),φ∗
C(t ),φ∗

A(t ) (fourth row), and the
instantaneous storing fractions φSC(t ) and φSA(t ) (solid lines, bottom row)), and their target frac-
tionsφ∗

SC(t ) andφ∗
SA(t ) (dashed lines, bottom row). Note that because of the slow proteome relax-

ation resulting from the slow growth rateλ(t ) (see Eq. 5.29), the cell also needs to grow significantly
during the night in order to maintain φSA, necessary to make cyanophycin for growth during the
day. This is in marked contrast to the dynamics in the quasi-equilibrium model, in which the pro-
teome relaxes instantaneously to changing nutrient levels and the cell does not grow at night (see
Fig. 5.1). Please also note that the average growth rate is significantly lower in this slow-proteome
model, 〈λ〉24 = 0.039/h, than in the quasi-equilibrium model, 〈λ〉24 = 0.064/h. Parameter values
the same as in Fig. 5.1: νL

C = 2/h = νD
A = 2/h; ν̃D

C = 2/h; ν̃L
A = 6/h; νR = 0.2/h; νSC = νSA = 0.6/h;

KC = 5cG = KA = 5cA .

5.4.2. SLOW-PROTEOME MODEL

Fig. 5.3 shows time traces of the growth rate, the protein fractions and the glycogen and

cyanophycin levels for our slow-proteome model. The parameters νβα are identical to
those of the quasi-equilibrium model corresponding to Fig. 5.1, yet φSC and φSA have
been optimized to maximize the growth rate 〈λ〉24 over 24h.

The first point to note is that the average growth rate in the slow-proteome model,
〈λ〉24 = 0.037, is lower than in the quasi-equilibrium model, which is 〈λ〉24 = 0.064. Clearly,
the slow relaxation of the proteome drastically lowers the growth rate. The second point
is that while the cells predominantly grow during the day (top row), the growth rate dur-
ing the night is markedly non-zero near the beginning of the night, in marked contrast
to the behavior in the quasi-equilibrium model (Fig. 5.1B),
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To characterize the growth dynamics further, we show in the second row of Fig. 5.3
the concentration of cyanophycin and glycogen, respectively. It is seen that the cyanophycin
levels rise during the night, when nitrogen is stored into cyanophycin, yet fall during the
day, when the cyanophycin provides the nitrogen source for protein production. Near
the end of the day, the cyanophycin levels approach zero, causing the growth rate to
drop to zero. The glycogen levels rise during the day, which makes it possible to grow
during the night. During the night, however, the glycogen levels rapidly fall, causing the
growth at night to come to a halt.

While the behavior of the reservoir dynamics explains the time-dependent growth
rate λ(t ) to a large degree, a few puzzling features remain to be resolved. The first is
that the growth rate at the beginning of the day first rises, even though the levels of
cyanohycin already fall. The second is that the growth rate drops rather abruptly near
the end of the day, even though the concentration of cyanophycin, [N], is well below the
enzyme activation threshold KA. But perhaps the most important question that needs
to be addressed is why the cells decide to store glycogen and grow at night, given that
the optimal strategy in the quasi-equilibrium model is not to grow at all during the night
(see Fig. 5.1).

To elucidate these questions, we turn to the time traces of the protein fractions,
shown in the third to fifth row of Fig. 5.3. The third row showsφR,φC,φA, while the fourth
row shows the target fractions φ∗

R,φ∗
C,φ∗

A that the cell aims to reach. The fifth row shows
the storing fractions φSC and φSA, together with their target fractions, φ∗

SC and φ∗
SA, re-

spectively.

To explain the initial rise of the growth rate, we start by noting that at the end of the
night, φA is large because the cell needs to store cyanophycin during the night, which
drains nitrogen flux. The next day, the cell does not need to store nitrogen, while at
the beginning of the day the cyanophycin level—the nitrogen source during the day—
is still high; taken together this means that the target fraction φ∗

A will be relatively low
(fourth row). Indeed, at the beginning of the day, the target fraction φ∗

A is smaller than
the current fraction φA, causing φA to fall initially. This allows φR to rise, and since the
growth rate is proportional to φR (see Eq. 5.29), this tends to raise the growth rate. The
growth thus rises initially, because the proteome slowly adapts to maximize the growth
rate.
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Figure 5.4: The average growth over 24 hours, 〈λ〉24 (1/h), as a function of the anticipation time
Ta (h) in the full model, including anticipation. The anticipation model is identical to the slow-
proteome model in that it is given by Eq. 5.29 for λ(t ), Eq. 5.34 for φα(t ), and Eqs. 5.35-5.40, which
are solved to yieldχα(t ) =φ∗

α(t ) in Eq. 5.34 andσ(t ) =σ∗(t ) in Eq. 5.29, except that the storing frac-
tionsφSC andφSA start to be expressed an anticipation time Ta before the beginning of the day and
night, respectively; the reservoir dynamics is, as for the other models, given by Eqs. 5.23 and 5.24.

It is seen that there is an optimal anticipation time T
opt
a ≈ 4.5h that maximizes the average growth

rate over 24 hours. This maximal growth rate is about 15% higher than in the slow-proteome model
(see Fig. 5.3). The principal reason is that the cyanophycin-storing fraction can already be made
before the beginning of the night, as elucidated in Fig. 5.5. Parameter values the same as in Fig. 5.1:
νL

C = 2/h = νD
A = 2/h; ν̃D

C = 2/h; ν̃L
A = 6/h; νR = 0.2/h; νSC = νSA = 0.6/h; KC = 5cG = KA = 5cA .

As time progresses, the cyanophycin level falls, which causes the target fraction φ∗
A

to rise (fourth row). At some point, the current fraction φA becomes equal to the target
fraction φ∗

A. From this moment on, φA will rise in order to maintain the flux of nitrogen
in the face of the falling cyanophycin levels. This rise in φA is accompanied by a drop in
φC and φR, causing the growth rate to go down.

Finally, why does the cell grow at night? In this model, the cyanophycin storing pro-
teins are not made during the day, which means that then the storing fraction φSA will
fall, because of dilution due to growth. Inevitably, at the beginning of the night, the frac-
tionφSA will always be smaller than that at the end of the night before. Consequently,φSA

must rise to move towards the target fraction φ∗
SA, which in this case is close to the max-

imium at which the growth rate is zero, φ0
SA (dashed blue line in last row). However, in

the absence of protein degradation, the proteome can only relax because of growth, and,
indeed, this is the reason why the cell needs to grow during the night: without growth,
φSA would eventually become zero, and no cyanophycin could be stored. During the
night, new storing proteins have to be made, in order to compensate for the drop in φSA
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resulting from dilution during the day.

Lastly, in order to grow during the night, the cell needs to store glycogen during the
day, which explains why φSC is non-zero during the day. The cell thus adopts a mixed
strategy in which it grows during the day and during the night, because this is the op-
timal strategy in the presence of slow proteome relaxation. In the next section, we will
study whether anticipation makes it possible to counteract the detrimental effects of
slow proteome relaxation, by initiating a response ahead of time.

5.5. ANTICIPATION

To study the importance of anticipation, we first consider the scenario where the cell
can express the storing fractions φSC and φSA before the beginning of the day and the
night, respectively; here, we thus do not consider the possibility that cells can anticipate

the changes in the protein efficiencies νβα (see Eqs. 5.41 and 5.42). More specifically, we
consider 4 optimization parameters: the magnitudes of φSC and φSA and the timings of
their expression; to limit the optimisation space, we take the duration of the expression
window to be constant, namely 12h. Performing the optimisation, we observed that the
growth-rate dependence on the expression timing of φSC was rather weak, because, as
we will see below, the optimal φSC is very small. We therefore considered one anticipa-
tion time Ta, which determines the times k24−Ta and 12+k24−Ta, with k = 0,1,2, . . . ,
from which φSC and φSA respectively are expressed for 12 hours at constant values, re-
spectively. This limits the optimisation space to 3 parameters: the magnitudes of φSA

and φSC, respectively, and the anticipation time Ta.

To analyze the importance of anticipation, we optimized the growth rate over φSA

and φSC for each value of Ta, for the same set of parameters as in Figs. 5.1-5.3. Fig. 5.4
shows the result. It is seen that expressing the storing enzymes about 4.5 hours before
the beginning of the next part of the day can speed up growth by about 15%.
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Figure 5.5: Dynamics of the full model, including anticipation. The model is identical to the slow-
proteome model in that it is given by Eq. 5.29 for λ(t ), Eq. 5.34 for φα(t ), and Eqs. 5.35-5.40, which
are solved to yield χα(t ) = φ∗

α(t ) in Eq. 5.34 and σ(t ) = σ∗(t ) in Eq. 5.29, except that the storing

fractionsφSC andφSA start to be expressed at the optimal anticipation time T
opt
a = 4.5h before the

beginning of the day and night, respectively (see Fig. 5.4); the reservoir dynamics is, as for the other
models, given by Eqs. 5.23 and 5.24. Time traces of the growth rate λ(t ) (1/h, top row), glycogen
levels [C](t ) and cyanophycin levels [N](t ) (second row), protein fractionsφR(t ),φC(t ),φA(t ) (third
row), their target fractionsφ∗

R(t ),φ∗
C(t ),φ∗

A(t ) (fourth row), and the instantaneous storing fractions
φSC(t ) and φSA(t ) (solid lines, bottom row)), and their target fractions φ∗

SC(t ) and φ∗
SA(t ) (dashed

lines, bottom row). The average growth rate over 24 hours in this model, 〈λ〉24 = 0.044/h, is about
15% higher than in the slow proteome model. Note also that the growth rate during the day first
rises because the proteome is still adapting to the nutrient levels (top row); however, Ta = 4.5h
before the beginning of the night, the growth rate goes down, because the cell prepares for the
night by expressing the cyanohycin storing fraction φSA (bottom panel). Before the end of the day,
φSA has reached a level that is sufficient to store enough cyanophycin during the night for fueling
growth the next day. Concomitantly, the growth rate is now zero during the night, in contrast to
the scenario in the slow-proteome model where φSA has to be made during the night, and the
cells therefore have to grow during the night Fig. 5.3. Parameter values the same as in Fig. 5.1:
νL

C = 2/h = νD
A = 2/h; ν̃D

C = 2/h; ν̃L
A = 6/h; νR = 0.2/h; νSC = νSA = 0.6/h; KC = 5cG = KA = 5cA .

To elucidate this behavior, we show in Fig. 5.5 the time traces for the optimal antic-
ipation time T opt

a = 4.5h that maximizes the growth rate (Fig. 5.4). The top row shows
that, as in the slow-proteome model, the growth rate first rises at the beginning of the
day, because the proteome still adapts to the changing nutrient levels. However, at about
T opt

a = 4.5h before the end of the day, the growth rate goes down markedly. This is be-
cause the cell starts to express the proteins φSA that store cyanophycin during the night
(bottom row). Clearly, there is a cost to anticipation: it lowers the instantaneous growth
rate. The cell should therefore not express the cyanophycin-storing proteins too early
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in the day. Yet, expressing cyanophycin-storing enzymes already during the day also
has a marked benefit: it makes it possible to reach a sufficiently high level of φSA be-
fore the beginning of the night such that enough cyanophycin can be stored during
the night. The cell therefore does not need to grow during the night to raise φSA, as in
the slow-proteome model; indeed, even though φSA does not rise during the night, the
level is much higher than the average level in the slow-proteome model, so that more
cyanophycin is stored during the night, as a result of which the cells grow much faster
during the day (compare with Fig. 5.3). Anticipation thus makes it possible to implement
the optimal growth strategy as revealed by the quasi-equilibrium model (see Fig. 5.1),
which is to grow exclusively during the day, as observed experimentally.

We also considered anticipation of νβC and νβA, as described around Eqs. 5.41 and 5.42.

However, because the growth rate is zero at night, the benefit of optimising ν
β

C,νβA is
marginal, for two reasons. Firstly, because the cell cannot grow at night, it cannot adjust
the proteome before the beginning of the day. Secondly, adjusting the proteome frac-
tions during the day based on the anticipated efficiencies νD

C and νD
A during the night

would lower the instantaneous growth rate, because the instantaneous protein fractions
φα would become suboptimal, i.e. not given by the current efficiencies νL

C and νL
A.

5.6. DISCUSSION

The power of the framework of Hwa and co-workers is that it provides a coarse-grained
description of the proteome with only a limited number of sectors, characterized by en-
zyme efficiencies that can be measured experimentally [40, 41, 44, 45, 105]. We therefore
sought to develop a minimal model, consisting of a small number of sectors that can
be characterized experimentally, also given the fact that as yet there is no experimental
data that warrants a more detailed model. Nonetheless, even though the model consists
of only 3 main sectors and 2 storing sectors, the dynamical behaviour of our model is al-
ready very rich. Specifically, our analysis shows that the requirement to store carbon and
nitrogen means that the cells tend to adopt an extreme strategy in which they exclusively
grow during the day. The fundamental reason is contained in the growth laws uncovered
in refs. [40, 41, 44, 45, 105]: storing more glycogen during the day will increase the growth
rate during the night, yet this benefit decreases as more cyanophycin-storing enzymes
are expressed during the night (and vanishes in fact when this fraction approaches its
maximum at which the growth rate becomes zero, see Fig. 5.2); at the same time, the
benefit of storing more cyanophycin during the night—growing faster during the day—
increases as less glycogen is stored during the day. The interplay between these two
effects creates a positive feedback loop in which the cells store as much cyanophycin as
possible during the night and as little glycogen as needed during the day to maximize
the growth rate during the day.

While we focus here on the cyanobacterium Cyanothece, the application of our frame-
work to cyanobacteria such as Synechococcus and Synechocystis predicts that also these
bacteria tend to grow predominantly during the day (data not shown). If the marginal
cost of storing glycogen—the reduction in the growth rate during the day—is higher than
the marginal benefit—the increase in the growth rate during the night—then the optimal
strategy is to not store any glycogen at all for growth during the night, and hence exclu-
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sively grow during the day.

Our analysis also reveals that the slow relaxation of the proteome creates a severe
challenge in implementing the optimal strategy. In the absence of protein degradation,
the cells need to grow in order to adjust their proteome. Yet, cyanobacterial cells grow
slowly, which means that the relaxation time will be long compared to the 24h period
of the day-night rhythm. As a result, to reach the required cyanophycin-storing frac-
tion, cells would need to grow significantly during the night, in the absence of antic-
ipation. Indeed, the principal benefit of anticipation, according to our model, is that
it makes it possible to express the storing fractions ahead of time. Interestingly, this
prediction appears to be supported by recent mass-spectrometry proteomics data and
RNA-sequencing transcriptomics data: the expression of cyanophycin is highest in the
late light and progressively diminishes during the night into the early light [119].

While the dynamics of our minimal model is already complex, it seems natural to
increase the number of sectors as more data becomes available. In particular, it might
be of interest to distinguish between proteins of a given sector that are generic, i.e. ex-
pressed at significant levels both during the day and during the night, and proteins that
are specific to one part of the day, such as the photosynthesis components. The chal-
lenge will be to define major sub-sectors and devise experiments which make it possible
to measure the associated enzyme efficiencies.

Another natural extension of our model is to include protein degradation. First of all,
active protein degradation makes it possible to increase the proteome relaxation rate.
While active protein degradation by itself tends to slow down the growth rate, reaching
the optimal proteome partitioning faster might offset this cost. Secondly, some proteins
tend to be unstable, meaning that degradation by spontaneous decay is inevitable. In
our full model, the amount of glycogen stored is vanishingly small, because our model
only considers glycogen as a source of carbon for protein synthesis and the cells do not
grow during the night. At the same time, it is well known that cyanobacteria store glyco-
gen. Some of the stored glycogen will be essential for providing the energy to run main-
tenance processes, such as DNA repair, or to drive the cyanophycin-storing reactions—
storing cyanophycin is ATP consuming [123]. However, it is also possible that glycogen
is needed to synthesize those proteins that have decayed significantly during the night,
such as the components of the protein synthesis machinery. It would then be inter-
esting to see whether including this into the model would yield the prediction that it
is beneficial to start expressing these proteins before the end of the night, as observed
experimentally [119].

In our model, cyanophycin serves exclusively as a source of nitrogen, which is a rea-
sonable starting point given that cyanophycin is very rich in nitrogen. However, cyanophycin
also contains carbon and it has indeed been speculated that it also provides a carbon
store [117]. Our model could be extended to include this. While the benefit of providing
a carbon source during the day might be small in the presence of high CO2 and light lev-
els, the cost of draining carbon flux at night might be more significant—this effect could
be included by adding a term to the equation for the carbon flux (Eq. 5.3), representing
the carbon flux into cyanophycin during the night. Including this effect in the model will
also raise the required levels of glycogen.

In future work, we will use this model to predict the growth rate of mutants with
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altered clock periods and wild-type cells growing in light-dark cycles with periods de-
viating from 24h [39]. When wild-type cells of Synechococcus elongatus are competed
against an arrhythmic strain, then the latter are rapidly out-competed by the wild-type
when the cells are exposed to 12h:12h light:dark cycles [39]. Under competition in con-
stant light conditions, however, arrhythmic strains grew slightly better than the wild type
[39]. This indicates that the clock may confer a fitness benefit, but only if the organism
lives in a circadian environment. Apparently, an oscillatory pattern of gene expression is
a disadvantage in continuous light. In another set of experiments, mutants with differ-
ent clock periods lengths were competed with wild-type strains and with each other, with
the result that the strain whose clock period most closely matched that of the light-dark
cycle won the competition [38, 39]. It will be of interest to see whether the framework
presented here can describe these types of experiments.
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[95] Tănase-Nicola S, Warren PB, ten Wolde PR (2006) Signal detection, modularity,
and the correlation between extrinsic and intrinsic noise in biochemical networks.
Physical Review Letters 97:068102.

[96] Mitra PP, Stark JB (2001) Nonlinear limits to the information capacity of optical fibre
communications. Nature.

[97] Pfeuty B, Thommen Q, Lefranc M (2011) Robust entrainment of circadian oscilla-
tors requires specific phase response curves. Biophysical journal 100:2557–65.

[98] Hasegawa Y, Arita M (2013) Circadian clocks optimally adapt to sunlight for re-
liable synchronization. Journal of the Royal Society, Interface / the Royal Society
11:20131018–20131018.

[99] Hasegawa Y, Arita M (2014) Optimal Implementations for Reliable Circadian
Clocks. Physical Review Letters 113:108101.

[100] Gillespie DT (2000) The chemical Langevin equation. The Journal of Chemical
Physics 113:297–306.

[101] Liu X, et al. (2007) A G Protein-Coupled Receptor Is a Plasma Membrane Receptor
for the Plant Hormone Abscisic Acid. Science 315:1712–1716.

[102] Phong C, Markson JS, Wilhoite CM, Rust MJ (2013) Robust and tunable circadian
rhythms from differentially sensitive catalytic domains. Proceedings of the National
Academy of Sciences of the United States of America 110:1124–9.



BIBLIOGRAPHY

5

149

[103] Paijmans J, Lubensky DK, Rein ten Wolde P (2017) Robustness of synthetic oscil-
lators in growing and dividing cells. Physical Review E 95:052403.

[104] Paijmans J, Lubensky DK, Wolde PR (2016) Period robustness and entrainability
under changing nucleotide concentrations in the post-translational Kai circadian
clock. arXiv.org.

[105] Hui S, et al. (2015) Quantitative proteomic analysis reveals a simple strategy of
global resource allocation in bacteria. Molecular Systems Biology 11:e784–e784.
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SUMMARY

Almost all organisms on our planet exhibit phases of rest and activity. It is not well un-
derstood why these two phases have evolved. However, it is clear that these phases are
synchronized with the day-night cycle in the environment. To do so, the organism must
know the time. Many organisms, ranging from cyanobacteria, fungi, to plants and ani-
mals, employ a circadian clock to estimate the time of the day. A hallmark of these clocks
is that they can oscillate autonomously with a period of nearly 24 hours. Yet, to keep the
clock in synchrony with the environment, the clocks are also coupled to environmental
signals, such as light or temperature.

These clocks orchestrate the cellular and behavioral activity of the organism with the
day-night cycle. It is possible to observe in our daily life the signs of their existence.
For instance, an Albizia tree (the silk worm tree) opens its leaves during the day to do
photosynthesis, yet during the night it closes them to protect the leaves from insects.
When an Albizia tree is grown under constant light conditions, the open-close rhythmic
behavior of the leaves continues to exist. It shows that this tree has an internal clock
that allows it to estimate the time, and regulate its activity even in the absence of any
environmental cue.

How do cells infer the time? What is the precision by which a clock can estimate the
time? What are the properties of these clocks that allow them to be robustly entrained
by environmental signals in the presence of biochemical noise? What is the benefit of
a bona fide clock that can tick autonomously, as compared to an hour glass clock that
relies on a daily resetting? What are the principles of circadian metabolism? These are
the questions that I addressed in this thesis. Using numerical simulations and analyti-
cal approaches I studied the dynamics of circadian clocks and their ability to transmit
information. Moreover, I introduced, for the first time in the clock field, the mutual in-
formation as a measure to quantify the precision by which clocks can estimate the time.

In the first project, I addressed the question how accurately the cell can estimate
the time from an ensemble of oscillatory proteins driven by a circadian clock. Using
an analytical approach, I studied how the precision depends on the number of readout
proteins, and on the magnitude and cross-correlations in and between the noise in the
different readout proteins. Interestingly, I found that in the regime of low noise (com-
pared to the amplitude), cross-correlations in the noise between the readout proteins
can increase the precision.

How circadian clocks are coupled to their environment is one of the wide-open ques-
tions in chronobiology. This coupling is characterized by a so-called Phase Response
Curve (PRC), which describes the change in the phase of the clock as a function of the
phase of the clock at which the stimulus is applied. Different organisms exhibit different
PRCs, although many share a number of characteristics: they often have a positive lobe
(corresponding to a positive phase shift), followed by a dead-zone in which the clock
does not respond to the stimulus at all, which in turn is followed by a negative lobe.
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How the performance of the clock depends on the shape of the phase-response curve,
the coupling strength, the intrinsic period of the clock, and the internal noise, is not
understood. I addressed this question by modeling the clock as a noisy phase oscilla-
tor coupled to an external signal. My results reveal that there is an optimal coupling
strength that maximizes the mutual information: indeed, the surprising result is that
coupling the clock too strongly, causes the mutual information to go down; this is be-
cause coupling the system too strongly leads to a non-linearity in the mapping between
the actual time and the phase of the clock, which hampers information transmission.
However, the optimal coupling strength does increase with the strength of the internal
noise. In addition, I found that the optimal intrinsic clock period can differ from 24
hours. Furthermore, I studied extensively the optimal shape of the PRC as a function the
internal-noise strength. Interestingly, I found that the width of the dead-zone depends
on the magnitude of the internal noise. This leads to clear predictions that can be tested
experimentally. Lastly, I developed different theories, and show that they successfully
describe the system in different regimes.

In chapter 4, I addressed the most fundamental question of this thesis: What is the
benefit of a bona fide clock that can tick autonomously with a period of 24 hours? Many
organisms employ such a circadian clock. However, there are cyanobacteria and purple
bacteria that possess an hour glass, which cannot oscillate autonomously, but relies on
periodic driving for exhibiting oscillations. A canonical (bona fide) clock is a limit-cycle
oscillator – a system with a limit-cycle attractor – while an hour glass is a damped oscil-
lator – a system with a fixed-point attractor. I first studied three different computational
models, which are inspired by the cyanobacteria and purple bacteria; two are damped
oscillators, while one is a limit-cycle oscillator. The principal result is that for low in-
put noise, the performance of the damped oscillator and the limit-cycle oscillator is very
similar, but that for high input noise, the limit-cycle oscillator is far superior. Clearly,
the limit-cycle is much more robust to input noise. I continue the analysis by asking
whether this observation depends on the intricate details of the system, or whether it is
a general phenomenon. Using a well-known model called the Stuart-Landau oscillator,
we tackled the problem analytically, looking for universal behavior. The Stuart-Landau
model describes a weakly non-linear oscillator close to the Hopf bifurcation where the
autonomous oscillations emerge. By changing a single parameter, the system can be
moved from a regime in which it exhibits damped oscillations in the absence of driving,
to a regime in which it can sustain autonomous oscillations. I found that this model can
reproduce the principal result of the computational models. This shows that limit-cycle
oscillators are generically more robust to input noise than damped oscillators. The intu-
itive explanation is that damped oscillators cannot lift the trade-off between signal and
noise, whereas limit-cycle oscillators can: lowering the coupling of a damped oscilla-
tor to the input reduces the propagation of input noise, but it also lowers the amplitude
of the oscillations (the signal), such that the signal-to-noise ratio remains unchanged;
in contrast, lowering the coupling of the limit-cycle oscillator also reduces input-noise
propagation, yet the amplitude remains essentially constant, because this is an inherent,
robust property of the limit-cycle.

In the last chapter of the thesis, I have studied the design principles of circadian
metabolism. I investigate the metabolism of cyanobacterial cells that exhibit photo-
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synthesis, which means that they have a constraint set by the environment: during the
day they can perform photosynthesis, but during the night they need to switch their
metabolic activity to obtain energy from other sources. Here, I tried to understand what
the optimal strategy for circadian metabolism is, and whether this can explain why many
cyanobacteria grow exclusively during the day. To this end, I have adopted a phenomeno-
logical model that can successfully describe the relationship between growth and the or-
ganization of the proteome in the bacterium Escherichia coli. I extended this model to
study a particular cyanobacterium, called Cyanothece. During the day, this bacterium
fixes carbon via photosynthesis, using one fraction for growth and storing another in the
form of glycogen. During the night, it fixes nitrogen, storing it in the form of a polymer
called cyanophycin. The model predicts that the need to store glycogen during the day
and nitrogen during the night, tends to generate an extreme growth strategy, in which
the cells grow exclusively during the day, as observed experimentally. This behavior can
be understood from the growth laws that have been identified for E. coli. Yet, the analysis
also shows that the slow growth during the night poses a major challenge for implement-
ing this strategy. Interestingly, by exploiting the knowledge on time, as provided by the
circadian clock, the cell can anticipate the changes between and night, thereby enabling
it to implement the optimal growth strategy. My study is arguably the first to give a quan-
titative demonstration of the benefit of a circadian clock.

Concluding, using tools from statistical physics, I have analyzed how reliably cells
can infer the time using circadian clocks, the coupling of clocks to entrainment signals,
the benefit of circadian clocks in estimating the time, and what the benefit of knowing
the time is for steering metabolism.





SAMENVATTING

Vrijwel alle organismen op onze planeet leggen fasen van rust en activiteit aan de dag.
Waarom deze twee toestanden zijn geëvolueerd is nog steeds niet volledig begrepen. Het
is echter duidelijk dat organismen de activiteitsschommelingen met het dag-nacht ritme
synchroniseren, en dat ze hiervoor de tijd bijhouden. Veel organismen, van cyanobac-
teriën en schimmels tot planten en dieren, hebben een biologische klok om het tijdstip
te kunnen schatten. Eén van de belangrijkste eigenschap van deze klokken is dat ze
zelfstandig kunnen oscilleren met een periode van ongeveer 24 uur. Maar om deze syn-
chroon te laten lopen met het dag-nacht ritme, moet de klok aanwijzingen halen uit de
omgeving, door bijvoorbeeld licht- of temperatuursignalen te meten.

Biologische klokken orkestreren de activiteit van een organisme met het dag-nacht
ritme. In ons dagelijks leven kunnen we de gevolgen van biologische klokken zien. Zo
opent de Albizia, of Perzische slaapboom, overdag zijn bladeren om het zonlicht op te
vangen, om ze ’s nachts weer te sluiten als bescherming tegen insectenvraat. Deze ritmes
gaan zelfs door als de Albizia altijd in het licht staat. Dit laat zien dat de boom een in-
terne klok heeft waarmee hij kan schatten hoe laat het is, en hij reguleert zijn activiteit
ook zonder een signaal van buitenaf. Hoe kunnen cellen het tijdstip schatten? Hoe pre-
cies kunnen ze dat? Wat zijn de eigenschappen van deze klokken die ervoor zorgen dat
ze robuust worden gesynchroniseerd met omgevingssignalen, terwijl er ruis zit in die
signalen? Wat is het voordeel van een bonafide klok die zelf tikt, in plaats van een soort
zandloper die elke dag opnieuw gezet moet worden? Wat zijn de principes die cellen vol-
gen in hun metabole ritmes? Dit zijn de vragen waarop ik me richt in dit proefschrift. Ik
heb de dynamica van biologische klokken en hun vermogen om informatie door te geven
bestudeerd, gebruikmakend van computersimulaties en analytische methoden. Verder
heb ik voor het eerst de wiskundige grootheid wederzijdse informatie toegepast om te
kwantificeren met welke precisie klokken de tijd kunnen schatten. In mijn eerste project
heb ik de vraag behandeld hoe nauwkeurig een cel de tijd kan schatten uit een collectie
van oscillerende eiwitten die aangedreven worden door een biologische klok. Met ana-
lytische formules heb ik berekend hoe de precisie afhangt van het aantal uitlees-eiwitten,
van de ruissterkte in chemische reacties, en van de kruiscorrelatie tussen de hoeveelhe-
den van verschillende uitleeseiwitten. Uit dit onderzoek blijkt dat wanneer er weinig ruis
is, kruiscorrelatie de nauwkeurigheid kan bevorderen. Hoe biologische klokken aan hun
omgeving gekoppeld zijn is een van de meest prangende vragen van de chronobiolo-
gie. De koppeling wordt gekarakteriseerd via de zogenoemde Fase-Respons Curve (FRC).
Deze beschrijft hoe de fase van een klok verandert na een toegediend signaal, als functie
van de fase waarin de klok zich bevindt op het moment dat het signaal aankomt. Elk or-
ganisme heeft een andere FRC, maar toch delen ze vaak bepaalde karakteristieken: vaak
is er een positieve lob, die correspondeert met een positieve faseverschuiving. Daarna
komt er een dode zone waarin de klok niet op externe signalen reageert, uiteindelijk
gevolgd door een negatief dal. Hoe de prestatie van de klok afhangt van de precieze vorm
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van de FRC, de sterkte van de koppeling tussen de klok en de omgeving, de intrinsieke
periode van de klok, en de interne ruis, is niet goed begrepen. Om hier meer inzicht in te
krijgen heb ik de klok gemodelleerd als een fase-oscillator met ruis, gekoppeld aan een
extern signaal. Mijn resultaten laten zien dat er een optimale koppelingssterkte bestaat
waarbij de wederzijdse informatie wordt gemaximaliseerd. Verrassend genoeg daalt de
informatie bij een te sterke koppeling; dit wordt veroorzaakt door een niet-lineariteit
in de afbeelding van de werkelijke tijd naar de fase van de klok, waardoor informati-
etransmissie bemoeilijkt wordt. Toch neemt de optimale koppelingssterkte toe met de
interne ruissterkte. Daarnaast heb ik gevonden dat de optimale intrinsieke periode van
de klok niet altijd precies 24 uur is. Vervolgens heb ik uitgebreid gekeken naar de op-
timale vorm van de FRC als functie van de ruissterkte. Een interessant resultaat is dat
de breedte van de dode zone afhangt van de ruissterkte. Dit is een duidelijke voor-
spelling die experimenteel getest kan worden. Tenslotte heb ik verschillende theorieën
ontwikkeld die het systeem succesvol beschrijven in diverse domeinen. In hoofdstuk
vier komt de meest fundamentele vraag van dit proefschrift aan de orde: wat is het nut
van een bonafide klok die autonoom kan tikken met een periode van 24 uur? Veel or-
ganismen gebruiken een dergelijke biologische klok. Er zijn echter cyanobacteriën en
paarse bacteriën die in plaats van een klok een soort zandloper hebben die niet zelf
kan oscilleren, maar die elke dag opnieuw gezet moet worden. Een bonafide klok is een
zogenaamde limietcyclus oscillator, een systeem met een limietcyclus attractor, terwijl
een zandloper een gedempte oscillator is, een systeem met een puntattractor. Ik heb
eerst drie verschillende computermodellen bestudeerd, die door cyano- en paarse bac-
teriën geïnspireerd zijn; twee modellen zijn gedempte oscillatoren, terwijl het laatste
een limietcyclus oscillator is (een ongedempte oscillator die zelfstandig, zonder aandri-
jving, kan oscilleren). Het hoofdresultaat is dat de gedempte en limietcyclus oscillator
ongeveer even goed werken bij weinig ruis in het signaal, maar dat de laatste oscillator
veel beter is bij een hoge ruissterkte. Het is dus duidelijk dat de limietcyclus oscillator
veel robuuster is tegen signaalruis. Ik vervolg de analyse met de vraag of deze observatie
afhangt van de details van het systeem, of dat dit een generiek fenomeen is. Hiervoor ge-
bruiken we het gevestigde Stuart-Landau model, dat analytisch kan worden bestudeerd
en waarin we naar universeel gedrag hebben gezocht. Het Stuart-Landau model beschri-
jft een zwak-niet lineaire oscillator dichtbij de Hopf-bifurcatie, waar autonome trillin-
gen tevoorschijn komen. Door een enkele parameter te veranderen kan het systeem
met gedempte oscillaties omslaan naar een systeem met autonome oscillaties. Ik vond
dat dit model de hoofdresultaten van de computermodellen kon reproduceren. Dit laat
zien dat limietcyclus oscillatoren in het algemeen robuuster zijn tegen signaalruis dan
gedempte oscillatoren Een intuïtieve verklaring is dat gedempte oscillatoren zich niet
kunnen ontdoen van het volgende compromis tussen signaal en ruis, terwijl limietcy-
clus oscillatoren dat wel kunnen: door de koppeling tussen oscillator en signaal in een
gedempte oscillator te verzwakken wordt de ruis minder doorgegeven, maar wordt de
amplitude van de oscillatie evenredig aangetast. Bij limietcyclus oscillatoren gaat de
doorgegeven ruis ook naar beneden bij een lagere koppelingssterkte, maar in tegen-
stelling tot het gedempte systeem blijft de amplitude hier praktisch gelijk. Dit is een in-
herente, robuuste eigenschap van de limietcyclus. In het laatste hoofdstuk van dit proef-
schrift behandel ik de ontwerpprincipes van het circadiaan metabolisme. Hierbij onder-
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zoek ik specifiek het metabolisme van cyanobacteriën, welke fotosynthese gebruiken
om energie te verkrijgen. Dit betekent dat de omgeving een beperking oplegt aan de
cyanobacteriën: fotosynthese is alleen gedurende de dag mogelijk, zodat de bacteriën ’s
nachts andere energiebronnen nodig hebben. Hier heb ik geprobeerd te begrijpen wat
de optimale strategie is om het metabolisme in te richten en of dit kan verklaren waarom
veel cyanobacteriën alleen gedurende de dag groeien. Daartoe heb ik een fenomenol-
ogisch model genomen dat de relatie tussen de groei en het proteoom in de bacterie
Escherichia coli succesvol beschrijft. Ik heb dit model uitgebreid zodat ik er de speci-
fieke cyanobacterie Cyanothece mee kon onderzoeken. Gedurende de dag fixeert deze
bacterie koolstof door fotosynthese, waarbij een deel wordt gebruikt voor de groei en
een ander deel wordt opgeslagen in de vorm van glycogeen. ’s Nachts fixeert de bacterie
stikstof en slaat deze op in het polymeer cyanofycine. Het model voorspelt een extreme
groeistrategie, waarbij cellen alleen overdag groeien, zoals ook experimenteel is vast-
gesteld. Dit komt voort uit de noodzaak om overdag glycogeen en ’s nachts cyanofycine
op te slaan, en is te begrijpen via de groeiwetten die voor E. coli gelden. De analyse laat
echter ook zien dat de langzame nachtelijke groei een groot struikelblok vormt voor het
implementeren van deze strategie. Hierbij komt de klok van pas, want door de kennis
over te tijd te gebruiken kan de cel anticiperen op overgangen tussen dag en nacht, en
zo de cel in staat stellen om de optimale groeistrategie toe te passen. Dit is waarschi-
jnlijk het eerste onderzoek dat kwantitatief laat zien hoeveel voordeel een biologische
klok oplevert. Concluderend heb ik in dit proefschrift methoden uit de statistische natu-
urkunde toegepast om te onderzoeken hoe cellen de tijd betrouwbaar kunnen schatten,
hoe de klok gekoppeld moet zijn aan externe signalen, wat de voordelen van een zelfs-
tandig opererende klok zijn, en hoe kennis over het tijdstip nuttig is om het metabolisme
bij te sturen.
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