We have studied the ultrafast dynamics of NH-stretch vibrational excitations in Watson-Crick base pairs consisting of adenine and uracil derivatives. To estimate the influence of the A:U hydrogen bonding on the vibrational dynamics, we have also studied the uracil derivative in monomeric form. The vibrational relaxation of the NH-stretching mode is found to occur much faster in the Watson-Crick base pair than in monomeric uracil. From the delay dependence of the transient vibrational spectra, it can be concluded that both in base-paired and monomeric uracil, the energy relaxation takes place in two steps, the first step being a rapid transfer of energy from the NH-stretching mode to an accepting mode, the second step the relaxation of this accepting mode. The transient spectra show evidence that in the base pair the hydrogen bond between the nucleobases acts as the accepting mode, and that the hydrogen bonding between the bases is responsible for the extremely fast vibrational relaxation in this system.