The cleaning of paintings using UV lasers is a growing field of interest in the practice of conservation. In this work, we have studied the chemical and physical changes induced by KrF excimer laser at 248 nm of tempera paint dosimeter systems. The changes have been evaluated by using a range of analytical techniques. These include profilometry; colorimetry; optical and vibrational spectroscopies, such as laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), Fourier transform Raman (FTR), and infrared (FT-IR); and analytical mass spectrometric techniques, such as direct-temperature-resolved mass spectrometry (DTMS) and matrix-assisted laser desorption and ionization mass spectrometry (MALDI-MS). Integration of the results obtained by these techniques allowed the investigation of the nature and degree of change of the irradiated paint systems. Direct laser irradiation induces various degrees of discoloration that depend strongly on the nature of the pigment. This effect takes place mainly on the surface layer of the sample. Degradation of the binding medium occurs in the presence of inorganic pigments, and in some cases, evidence of alterations in the molecular composition of the pigment has been obtained. Varnished systems do not display this discoloration when a thin protective layer is left on the paint. A laser cleaning strategy for varnished paintings should be based on the partial removal of the varnish, leaving a residual layer that shields the underlying pigments from direct laser exposure.
Anal. Chem.

Castillejo, M., Martín, M., Oujja, M., Silva, D., Torres, R., Manousaki, A., … Heeren, R. (2002). Analytical study of the chemical and physical changes induced by KrF laser cleaning of tempera paints. Anal. Chem., 74, 4662–4671. doi:10.1021/ac025778c